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( f l ap  

alternating bearing force in the j = x, y, z or r direction 

mean bearing force in the j = x, y or z direction 

applied alternating force on the shaft, j = x, y, z or r 

complex Fourier coefficient of FjSa(t), p = 1,2,3, .... 

applied mean force on the shaft, j = x, y or z 

complex Fourier coefficient of ( f(t) ) a, p = 1, 2, 3, .... 

( f )  bm mean bearing load vector 
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( f(t))ca alternating casing load vector 

( f(t) ), total shaft load vector 

( f(t) ]sa alternating shaft load vector 

( f ) sm mean shaft load vector 

G- bearing outer ring geometrical center 

Hk nonlinear functions, k = 1,2,3,...,V, given by equations (2.12a,b) and (2.13) 

h geometrical thickmess 

mass moment of inertia of the gear about j = x, y, z axis 

mass moment of inertia of the load about z axis 

mass moment of inertia of the motor about z axis 

mass moment of inertia of the pinion about j = x, y, z axis 
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mass moment of inertia of the shaft about j = x, y, z axis 
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rolling element load-deflection stiffness constant 

system stiffness matrix 

mount stiffness matrix 

proposed bearing stiffness matrix of dimension 6 
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[K]bms a matrix of dimension 5 as a subset of [K]bm with last row and coh.m"I 
excluded 

w ] h  

[K], shaft stiffness matrix 

gear mesh coupling stiffness matrix 

[Kli shaft segment stiffness matrix 

k m  

km 

effective torsional stiffness of the driving shaft coupling 

effective torsiond stiffness of the driven shaft coupling 

kbiw bearing stiffness coefficient, i, w = x, y, Z, e,, e,, 8, 

A 
estimated bearing stiffness coefficient, i, w = x, y, z, e,, e,, 8, biw 

k,,k, 

kh gear mesh stiffness 

kvj 

shaft (s) or plate (c) wavenumber (Chapter V) 

mount stiffness coefficient, j = x, y, z, e,, e,, 8, 

LA frequency bandwidth-averaged mean square acceleration in dE3 re <A2>,fl .0g2 

LV spatially and frequency bandwidth averaged mean square mobility level (dB re 
<V2>,ef=1.0m 2 /N 2 2  s ) 

L, shaft segment length 

Ls shaft length 

Mjba alternating bearing moment about j = x or y direction 

Mjbm mean bearing moment about j = x or y direction 
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Fr] system mass matrix 

Fr], shaftmassmatxix 

FrJC casing mass matrix 

mR rotor mass 

m, casing mass 

m, shaft mass 

q e j  shaft lumped mass 

( m ) 

alternating shaft bending moment about j = x or y direction 

lumped mass row vector 

number of gear teeth N, 

n rolling element load-deflection exponent 

"c 

"S 

p(t) normalized dynamic transmission error 

Qj 

Q 

qw 

( q(t))a 

( q)aP 

casing plate modal density (see Chapter V) 

number of shaft segments (Chapter IV) or shaft modal density (Chapter V) 

resultant normal load on the j-th rolling element 

acoustic source directivity (Chapter V) 

generalized displacement vector in Lagrangian formulation 

generalized alternating displacement vector 

complex Fourier coefficient of ( q(t))a, p = 1, 2 ,3 ,  ... 



( q) b total bearing displacement vector 

( q ) ba alternating bearing diSplaCement vector 

( q ) bm mean bearing displacement vector 

( q(t) ) ca alternating casing displacement vector 

( q(t))sa alternating shaft displacement vector 

mean shaft displacement vector 

force or moment transmissibility transfer function or room constant (see 
Chapter V) 
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j-th bearing coordinate vector, j = 1, n,+l, ns+2, 2ns+2 
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room surface area (Chapter V) 

total surface area of the casing plate in example case IU (Chapter III) 

bearing field transfer matrix 

applied alternating torque on the shaft, j = x, y or z 

applied mean torque on the shaft, j = x, y or z 

time 

alternating casing translational displacement in the j = x,y or z direction 
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ujsa(t) 

ujsm 

( u(t))ca casing alternating displacement vector 

(u(t) )sa shaft alternating displacement vector 

V( a) mobility transfer function 

<V2> 

Vjsa,Vjca Shaft (s) or plate(c) alternating velocity in the j=x,y,z direction 

alternating shaft translational displacement in the j = x,y or z direction 

mean shaft translational displacement in the j = x, y or z direction 

spatially and frequency bandwidth averaged mean square mobility 

X 

z .  

z, 

ZC 

Z 

zo 

a, 

- 
a 

Pja 

Pjm 

AFrbm 

solution to the problem H, = 0, k = 1,2 ,3 ,  ..., V 

total number of rolling element 

driving point shaft impedance (Chapter V) 

driving point plate impedance (Chapter V) 

number of loaded rolling element. 

characteristic impedance of the surrounding medium (Chapter V) 

unloaded bearing contact angle 

loaded j-th rolling element contact angle 

average absorption coefficient (Chapter V) 

alternating bearing angular displacement about the j = x or y direction 

mean bearing rotational displacement about the j = x or y direction 

incremental mean radial bearing force 



incremental mean radial bearing displacement 

frequency bandwidth 

resultant elastic deformation of the j-th ball element 

resultant elastic deformation of the j-th roller element 

error vector 

mean bearing translational displacement in the j = x, y or z direction 

resultant elastic deformation of the j-th rolling element 

alternating bearing translational displacement in the j = x, y or z direction 

effective j-th rolling element displacement in the radial direction 

effective j-th rolling element dqlacement in the axial direction 

stability functions given by equation (3.6) and Table 3.1 

mode shape vector corresponding to the j-th natural frequency 

dissipation loss factor for the internal (s) or external (c) subsystems 

coupling loss factor 

radius of gyration 

complex Fourier coefficient of the principal coordinate vector, p = 1,2,3,  ... 

external power input to the internal (s) subsystem 

net power transfer from the internal (s) subsystem to external (c) subsystems 

material density 
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ejca(t> 

Bjsa(t) 

ej,, 

( e(t) Ra rotor alternating angular displacement vector 

(e(t) ca casing alternating angular displacement vector 

( e(t)),, shaft alternating angular displacement vector 

alternating casing angular displacement about the j = x, y or z coordinate 

alternating shaft angular displacement about the j = x, y or z coordinate 

mean shaft angular displacement about the i-axis; j = x, y, z 

Rayleigh damping matrix proportionality constant 

casing plate radiation efficiency (Chapter V) 

mean rotational speed of the shaft 

mean rotational speed of the driving shaft 

mean rotational speed of the driven shaft 

bandwidth center frequency (Chapter V) 

gear mesh frequency 

undamped natural frequency, j = 1,2 ,3 ,  ... 

damped natural frequency, j = 1,2,3,  ... 

fundamental frequency 

excitation frequency, p = 1,2 , 3, ... 

bearing load angle 

angular distance of j-th rolling element from the x-axis 
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modal damping ratio Tj 

[ lT transpose of a matrix or vector 

I I magnitude or determinant 

first time derivative 

(3 second time derivative 

( )* complex conjugate 

(9 estimation based on simple models 
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ABSTRACT 

A new mathematical model is proposed to examine the vibration transmission 

through rolling element bearings in geared rotor systems. Current bearing models, 

based on either ideal boundary conditions for the shaft or purely translational stiffness 

element description, cannot explain how the vibratory motion may be transmitted from 

the rotating shaft to the casing. For example, a vibration model based upon the simple 

bearing formulations can only predict purely in-plane type motion on the flexible casing 

plate given only bending motion on the shaft. However, experimental results have 

shown that the casing plate motion is primarily flexural. This study clarifies this issue 

qualitatively and quantitatively by developing a comprehensive bearing stiffness matrix 

of dimension 6 model for the precision rolling element bearings from basic principles. 

The proposed bearing stiffness matrix is verified partially using available analytical and 

experimental data, and is completely characterized. 

This study extends the proposed bearing formulation to analyze the overall geared 

\ rotor system dynamics including casing and mounts. The bearing stiffness matrix is 

included in discrete system models using lumped parameter and/or dynamic finite 

element techniques. Eigensolution and forced harmonic response due to rotating mass 

unbalance or kinematic transmission error excitation for the following examples are 

computed: I. single-stage rotor system with flexible shaft supported by two bearings on 

/--, 

rigid casing and flexible mounts, 11. spur gear pair system with motor and load inertias 

XXVii 



attached to two flexible shafts supported by four bearings on flexibly mounted rigid 

casing, and In. case 11 with flexible casing and rigid mounts. In several of these 

examples, analytical predictions match with measured data which validate the proposed 

formulation. Numerical predictions show that the proposed theory is capable of 

predicting bearing moment transmissibility in addition to force transmissibility. 

A statistical energy analysis model combined with the bearing stiffness matrix is 

developed to predict the high frequency asymptotic dynamic behavior. The mean-square 

spatially averaged vibroacoustic responses are calculated for several example cases. A 

physical gearbox is also analyzed to demonstrate the salient features of the proposed 

technique. Good agreement is found between theory and experiment. 
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CHAPTER I 

INTRODUCTION 

1 .1  INTRODUCTION 

Noise and vibration generated by the rotating mechanical equipment including 

geared drives have always been a problem in the implementation of new technology in 

automobiles, rotorcrafts and industrial machines [ 1-61. Recently, the need for reliable 

vibratiodnoise prediction methods have been found to be crucial as faster and lighter 

machines are being designed [6-81. In most of these rotating systems, structure-borne 

noise paths through bearings, which support the rotating shafts on flexible or rigid 

casings, are dominant [5,6,9]. Hence, in order to obtain reliable mathematical 

prediction of the overall dynamic system, a complete understanding of the vibration 

transmission mechanism through bearings, and the role of bearings as a dynamic 

coupler between the shaft and casing, is critical. 

Current bearing models, based on ideal boundary condition or purely translational 

stiffness element description, cannot explain how the vibratory motion may be 

transmitted from the rotating shaft to the flexible casing and other connecting structures 

in rotating mechanical equipment [lo-151. These simple models are only adequate for 

the free and forced vibration analyses of the rotor dynamic system enclosed in a rigid 

casing. For example, a vibrational model of a rotating system based upon the existing 

bearing models can only predict puxely in-plane type motion on the flexible casing plate, 

1 
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given only the bending motion on the shaft. However, experimental results have shown 

that the casing plate motion is primarily flexural or out-of-plane type [9,16,17]. This 

paradox is essentially due to an incomplete understanding of the bearing as vibratory 

niotion transmitter in rotating mechanical equipment. 

The main focus of this dissertation is to clarify this issue quantitatively and 

qualitatively by developing a new mathematical model for the precision rolling element 

bearings, and extends the proposed bearing formulation to examine vibration 

transmissibility in rotating mechanical equipment through several example cases of 

bearing systems and geared drives. The superiority of the proposed model compared to 

simple models is also demonstrated in these example cases. A typical shaft-bearing- 

casing-mount system is shown in Figure 1.1. The rigid or flexible shaft may be 

subjected to forces and/or torques and supported by a bearing on a flexibly or rigidly 

mounted casing. Here, the vibration transmission is from the shaft to the casing and 

mount through the bearing system. Figure 1.2 shows a typical rolling element bearing 

subjected to forces and moments due to the rolling element deformation. The bearing is 

free to rotate about the axis perpendicular to the bearing plane, and hence does not 

transmit any dynamic moment about this axis. However, dynamic moments about the 

other two orthogonal axis exist which have not been considered in simple bearing 

models. Finally, a generic geared rotor system consists of a motor, spur gear pair, 

flexible shafts, load, flexible couplings, rolling element bearings, flexible casing and 

mounts as shown in Figure 1.3a is also considered. The system is excited by the gear 

kinematic transmission error at gear mesh frequency. A single-stage rotor system with 

rotating mass unbalance excitation as shown in Figure 1.3b is treated as a special case of 

Figure 1.3a. Further description of each system will be presented in later chapters. 

1 

1 
1 
1 
I 
1 
1 
1 
1 
1 
1 
1 
1 
I 
1 
1 
I 
I 

a 



Force t I I  
Rigid or 

Rolling 
Element 
Bearing 

A > v 
L 
7 1 

Rigid or 
Flexible 
Casing 

Rigid or Flexible Mount 

Figure 1.1 Schematic of a typical shaft-bearing-plate-mount system 
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Figure 1.2 Schematic of typical rolling element bearings. (a) Bearing forces and 
moments. (b) Deep groove ball bearing. (c) Angular contact ball bearing. 
(d) Taper roller bearing. (e) Cylindrical roller bearing. 
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Rigid or Flexible Casing 

Figure 1.3 Generic rotating mechanical systems. (a) A geared rotor system. (b) A 
single-stage rotor system 
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1.2  LITERATURE REVIEW 

Simple bearing models either assume ideal boundary conditions for the shaft or 

time-invariant translational springs in the axial and radial directions [lo-151. The ideal 

boundary conditions for the shaft are typically simply-supported for short bearings, 

clamped for long bearings or free (for torsional motion only) [lo-121. Formulas for the 

stiffness coefficients derived from the force-displacement relation commonly used by 

bearing designers [18,19] are given by Harris [18], Gargiulo [14] and White [20]. In 

1982 Rajab [21,22] realized the limitations of the simple models and philosophically 

proposed two additional stiffness coefficients which couple the radial and rotational 

bearing degrees of freedom, given radial and moment about the axis transverse to the 

radial line of action. However, in Chapter 11, this study has shown that his analyses of 

the ball and roller bearings were erroneous which resulted in an incorrect bearing 

stiffness matrix of dimension 2. In 1988, Young [23] extended Rajab’s [21] analyses to 

include mean axial force while retaining other features of Rajab’s model. This resulted 

in bearing stiffness matrix of dimension 3 which this study has again found to be 

incorrect. 

Simple bearing models are widely used in vibration models of rotor dynamic 

systems which typically exclude casing and mount dynamics, to calculate critical speeds, 

dynamic stability, and responses due to shaft excitations such as mass unbalance and 

gear transmission error [lo-151. In most cases, the vibration transmission through 

bearings is not the primary issue, and moreover such vibration models are clearly 

inadequate in. this regard. A satisfactory study of the vibration transmission through 

bearings in systems similar to Figure 1.1 has yet to be reported even though several 

researchers have considered it with limited success [20-22,241. 
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Publications on the modal analyses of geared drives and single or multiple stage 

rotor systems indicate that very little has been reported directly on the force 

transmissibility through bearings, and the dynamic effects of bearing, casing and 

mounts on the internal rotating system [lo-13,15,25-291. A comprehensive review of 

the available vibration studies of casing and mounts has been given by Lim and Singh in 

1989 [6]. In these studies, the dynamic interaction between the casing-mount system 

and the internal rotating system is often not incorporated, and in few instances when this 

interaction is modeled, only purely radial andor axial force on the bearings are included. 

Such models are still inadequate in explaining how the vibration is transmitted from the 

shaft to the casing. A more comprehensive review of the relevant studies will be given 

in each chapter. 

1.3 SCOPE AND OBJECTIVES 

A new mathematical model for the precision rolling element bearing in Figure 1.2 

is developed and incorporated in linear time-invariant discrete and broad band vibration 

models of Figures 1.1 and 1.3. This study proposes a comprehensive bearing stiffness 

matrix of dimension 6 which explains the vibratory motion transmission through the 

bearings and allows for the study of overall geared rotor system dynamics. The lumped 

parameter and dynamic finite element techniques are used to develop the discrete 

vibration models while statistical energy analysis method is used for the broad band 

vibration models. Experimental validation is also included in each chapter, where the 

driving point and cross point accelerance and mobility levels predicted by theory are 

compared to experiments. 
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The specific objectives of this dissertation are grouped as follows: bearing 

stiffness formulation, bearing system studies, geared rotor system studies, and statistical 

energy analysis. Each chapter is self sufficient since it is written in a journal paper style. 

Accordingly, a detailed problem statement is also included in each chapter. 

a. Bean 'ng stiffness formu lation: Since simple bearing models used in rotor dynamic 

analyses are inadequate in explaining the role of bearing as a vibratory motion 

transmitter, this study resolves this issue by proposing and developing a new rolling 

element bearing stiffness matrix which is suitable for the analysis of the vibration 

transmission through either ball or roller bearing. A numerical scheme is also developed 

to compute the stiffness coefficients and indicate the existence of solutions to the 

nonlinear algebraic bearing equations describing the bearing load-displacement 

relationships. The proposed bearing model is partially verified by comparing with 

published analytical and experimental results. In addition, the character of the bearing 

stiffness matrix and its sensitivity to various bearing parameters will be discussed. 

(Chapter II) 

b.Bean 'np svste m studies: The specific objectives of this chapter are to incorporate the 

proposed bearing matrix developed in Chapter 11 in linear discrete vibration models of 

the bearing system as shown in Figure 1.1 using lumped parameter and dynamic finite 

element methods to compute the eigensolution and forced harmonic response, and to 

evaluate the dynamic stability. The vibration transmission through bearing is also 

predicted for several example cases considered previously [ 14,20,24] and an 

experimental setup [ 173. The advantages of the proposed formulation compared to the 
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simple models is demonstrated by comparing their predicted transfer functions. The 

theory is also validated by comparing analytical predictions with experimental data on a 

shaft-bearing-plate system. (Chapter III) 

c. wed rotor svstem stydlpLs ' : Current geared rotor system vibration models exclude 

the effects of casing and mounts, and do not address the overall system behavior. The 

objectives of this chapter are to incorporate the proposed bearing matrix in the discrete 

vibration model of the generic geared rotor system of Figure 1.3 and conduct overall 

system studies by calculating eigensolutions and forced harmonic responses with 

emphasis on the prediction of vibration transmission through rolling element bearings. 

The effects of casing and mount dynamics on the internal rotating system is also 

evaluated. Example cases which include a single-stage rotor system with flexible shafts 

supported by two identical rolling element bearings on rigid casing and flexible 

mounts,and a spur gear pair with motor and load inertias attached to two flexible shafts 

supported by four rolling element bearings on rigid or flexible casing and compliant or 

massive mounts will be studied analytically and/or experimentally. Also, the advantages 

of the proposed formulation as compared to simple models of geared drives will be 

demonstrated. (Chapter IV) 

d. Statistical energv analv&: At very high frequencies, the narrow band approach using 

the lumped parameter or dynamic finite element model may not be adequate due to the 

high structural modal density. To overcome this problem, statistical energy analysis 

method is used to predict the vibratory energy transmission in and noise radiation from a 

geared rotor system as illustrated in Figure 1.4a. The proposed bearing matrix is again 
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+ Structure borne energy 
transmission 
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Energy transmission 
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(bending modes) 

Energy Transfer I 
Energy Dissipation Plate-mount system 

(flexural modes) I 

Figure 1.4 Vibration energy transmission in a geared rotor system. (a) Structure-borne 
noise paths. (b) Statistical energy analysis model. 
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incorporated in the vibratory energy model. In this method, only the mean-square 

spatially averaged response over one third octave frequency bandwidths are predicted 

which involves solution to a set of algebraic equations obtained through the vibratory 

energy balance of each subsystem shown in Figure 1.4b. Several example cases 

including a plate-cantilevered rectangular beam, circular shaft-bearing-plate system and a 

geared rotor system are chosen to demonstrate the salient features of this technique. 

(Chapter V) 



CHAPTER 2 

BEARING STIFFNESS FORMULATION 

2 . 1  INTRODUCTION 

Current rotor dynamic models describe precision rolling element bearings either as 

ideal boundary conditions for the shafts [lo-121, or as purely translational stiffness 

elements [ 13-15]. Such simple bearing models may be adequate for the free and forced 

vibration analyses of the rotor dynamic system enclosed in a rigid casing. But these 

mathematical models cannot explain how the vibratory motion may be transmitted from 

the rotating shaft to the flexible or rigid casing and other connecting structures. For 

example, a vibration model of a system similar to Figure 2.1, based upon the existing 

bearing models, can only predict purely in-plane type motion on the flexible casing plate 

given only the bending motion on the shaft. However, experimental results have shown 

that the casing plate motion is primarily flexural or out-of-plane type [9,16,17]. This 

paradox is essentially due to an incomplete understanding of the bearing as vibratory 

motion transmitter in rotating mechanical equipment including geared drives where 

structure-borne noise paths through bearings are often dominant. 

This chapter clarifies this issue qualitatively and quantitatively by developing a 

new mathematical model for precision rolling element bearings. A schematic of a 

generic system with a flexible shaft rotating at speed Q, and subjected to mean load 

vector (f}sm=(F~~m,T~sm], w = X, y, Z, flexible casing and mount is shown in Figure 

12 
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xsm 

Rolling 
Element 

/ Bearing 
Fxsm 

- b Z  

= e  zsm 

d I I Flexible 
Casing 

Figure 2.1 Schematic representation of the vibration transmission problem. Here the 
flexible shaft is subjected to mean forces Fwm and torques Twsm where w 
= x, y or z, is the direction and subscript m and s implies mean and shaft 
respectively. Also, 8 is the angular displacement and u is the translational 
displacement. 
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2.1; the shaft is supported on one of the following bearings: deep groove ball bearing, 

angular contact ball bearing, thrust ball bearing, straight roller bearing or taper roller 

bearing. A new bearing stiffness matrix [K]bm will be proposed which is expected to 

demonstrate a coupling between the shaft bending motion and the flexural motion of the 

casing plate. It will be shown that the translational bearing stiffness coefficients 

currently used in rotor dynamic models are a small subset of the proposed [K]bm. 

Several example cases are employed to validate our theory. Our bearing model can be 

easily incorporated in analytical or numerical models typically used for the dynamic 

analyses - this will be the basis of Chapters III and IV of this dissertation. 

2 .2  LITERATURE REVIEW 

The ideal boundary conditions for the shaft have typically been assumed to be 

simply-supported for short bearings, clamped for long bearings or free (in the torsional 

mode only) [lo-121. In other cases, researchers describe the bearing as time-invariant 

translational springs with stiffness coefficients kbrr and/or kbu in the radial and axial 

directions, respectively [ 13- 15,201. Formulas for such nonlinear stiffness coefficients 

are given by Hanis [ 181 and Gargiulo [ 141; these are derived from the radial or axial 

mean force-displacement equation commonly used by the precision rolling element 

bearing designers [ 18,191. Their derivations neglect the effects of radial clearance and 

mean bearing force vector (f}bm on the load distribution and hence are applicable only 

for constant load angle of 180 degrees. White refined these formulations by using a 

finite difference approximation for the computation of stiffness coefficients for radial 

ball and roller bearings, and by including the effects of radial clearance and force on the 
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load angle y11 [20]. Even with these refinements the mathematical model is still 

inadequate and incapable of predicting the vibration transmission across bearings. 

In 1982 Rajab [21], realized the limitations of the current simple theory and 

philosophically proposed two additional stiffness terms kbd and kwe which couple the 

relative radial and rotational bearing displacements between the inner and outer rings, 

given the mean radial load and moment about the axis transverse to the radial line of 

action. However our investigation, as demonstrated later in Sections 2.4 and 2.5, has 

shown that his analyses of the ball and taper roller bearings were erroneous which 

resulted in an incorrect 2x2 bearing stiffness matrix. In 1988 Young I231 extended 

Rajab's [21] analyses to include the mean axial force Fzbm, and then used a discrete 

summation over all of the loaded rolling elements to obtain bearing forces and moment 

instead of the integral form while still retaining other features of Rajab's model. This 

resulted in a 3x3 bearing stiffness matrix which our investigation has again found to be 

incorrect. Some of the salient features of Rajab's [21] and Young's [23] models are 

summarized in Reference [22]. 

Experimental determination of the bearing stiffness coefficients has been strictly 

limited to the translational coefficients kbn and kbzz. A method for the measurement of 

in situ bearing stiffness under oscillating loading conditions has been given by Walford 

and Stone [30]. Recently, Kraus et al. [24] designed an in situ measurement test stand 

to determine the translational bearing stiffness from measured vibration spectra, in 

conjunction with the single degree of freedom system theory. They determined the 

effect of preload, bearing release and rotational speed on kbm and kbm Their results 

show that kbm and kb,, are essentially h e a r  and the effect of $2, is negligible when a 

high preload is applied on the bearing. 
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2 . 3  ASSUMPTIONS AND OBJECTIVES 

Due to the following key differences, a separate foxmulation of E ] b m  for both ball 

and roller type rolling element bearings is required: (i) ball bearings have elliptical 

contacts and roller types have rectangular contacts between the inner race, rolling 

elements and outer race when loaded, and (ii) the loaded contact angles aj of the ball 

types may change but aj in the roller type remains relatively constant [31]. Each bearing 

is characterized by its kinematic and design parameters such as unloaded contact angle 

a,, radial clearance rL, effective stiffness coefficient K, for inner ring-single rolling 

element-outer ring contacts, angular misalignment, preloads, radius of inner raceway 

groove curvature center for ball type and bearing pitch radius for roller type [18,19,31]. 

It is expected that [K]bm is given in terms of these parameters. 

The mean bearing displacements (q)bm as shown in Figure 2.2 are given by the 

relative rigid body motions between the inner and outer rings. The total bearing 

displacement vector is given as (q)b=(q)bm+(q(t))ba where (q(t))ba is the fluctuation 

about the mean point (q)bm during the steady state rotation. Accordingly one must 

consider time varying bearing stiffness coefficients. However in our halysis, such time 

varying bearing stiffness coefficients are neglected by assuming very small vibratory 

motions i.e. (q)ba << (q)bm, and high bearing preloads. Consequently, only the mean 

bearing loads and displacements are included in the derivation of [K]bm. The basic 

load-deflection relation for each elastic rolling element is defined by the Hertzian contact 

stress theory [18,19,32], and the load experienced by each rolling element is described 

by its relative location in the bearing raceway. Further it is assumed that the angular 

position of each rolling element relative to one another is always maintained due to the 

rigid cages and pin retainers. Secondary effects such as centrifugal forces and 
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X 

Outer Ring of raceway diamater d b  

h e r  Ring of raceway diameter d bi 

\ Rolling Element of diameter D 

F ;x P y m  bvm 

Figure 2.2 Rolling element bearing kinematics and coordinate system. Here the 
following nomenclature is used: d b  is the outer raceway diameter, dbm is 
the bearing pitch diameter, dbi is the inner raceway diameter, yi is the 
angular position of rolling element, 6,, is the mean translational 
displacement, Ppm is the mean angular displacement, Fwbm is the mean 
bearing force, and Mpbq is the mean bearing moment where w = x, y, z, 
and p=x, y, are the directions. 
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gyroscopic moments on the bearing are ignored as these effects are evident only at 

extremely high rotational speeds. Tribological issues [32,33] are beyond the scope of 

this study and hence our analysis assumes bearings to be unlubricated. 

The specific objectives of this chapter are to: (i) propose and develop a new rolling 

element bearing stiffness matrix [k]bm which is suitable for the analysis of the vibration 

transmission through either ball or roller bearing, (ii) develop a numerical scheme to 

compute [K]bm and discuss the existence of sohtions to the nonlinear algebraic bearing 

equations describing load-displacement relationships, (ii) verify our proposed model by 

comparing its predictions with published analytical and experimental results [ 14,20,24] 

for the translational stiffness coefficients kbxx, kbyy and kbzz, (iv) relate [K]bm to 

various kinematic and design parameters, and perform parametric studies to investigate 

the effect of unloaded contact angle a, and preloads, and (v) characterize the nature of 

[K]bm and recommend its usage. Finally it should be noted that dimensionless 

parameters will not be used here as the metric units are invariably employed to specify 

bearings [32]. 

- 

2.4  BEARING LOAD-DISPLACEMENT RELATIONS 

In this section, the relationships between the bearing forces (Fxbm, Fybm, Fzbm) 

and moments { MXbm, Mybm) transmitted through the rolling element bearing, and the 

bearing displacements (q)bm as given in Figure 2.2 will be derived for both ball and 

roller bearings. The mean applied loads (f)  sm at the shaft as given in Figure 2.1 and 

bearing preloads generate the mean bearing displacements (q)bm and loads (f)bm. 

These displacements { q]bm are used to derive the resultant elastic deformation 8(vj) of 
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the j-th rolling element located at angle yj from the x-axis. From the ball bearing 

kinematics shown in Figure 2.3, 6 B ( ~ j )  is 

(2.la) 

(2.1 b) 

* 
(6  )Zj=AOsin a,+ (6)zj; (6*)rj=A, cos a,+(6) (2.lc) 

rj 

where A, and A are the unloaded and loaded relative distances between the inner ai and 

outer raceway groove curvature centers. Similarly for the roller bearing kinematics 

shown in Figure 2.4 for CCj=ao, BR(Ulj) is 

Note that in equations (2.1) and (2.2) 6 ~ j  S 0 or 6Rj 5 0 implies that the j-th rolling 

element is stress free. In both equations (2.1) and (2.2), the effective j-th rolling 

element displacements in the axial (6)d and radial (@rj directions are given in Figure 2.5 

in terms of the bearing.displacements (q)bm. 

(azj = 6Zm + r j  ( P,, sin (vi) - P,, C O W j )  I 

(6)rj= ti,, cosy.+ sym sin y j - r L  

(2.3a) 

(2.3b) 
J 
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j-&Ball - 
Inner Ring (i) 

Bearing Centerline 

Figure 2.3 Elastic deformation of rolling element for non-constant contact angle aj 
given by the change in the distance between the inner ai and outer a, 
raceway groove radius curvature centers due to the mean bearing loads or 
displacements. 

' 
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Figure 2.4 Elastic deformation of rolling element for constant contact angle aj = a, 
given by the change in the relative position of the inner and outer raceways 
due to the mean bearing loads or displacements. 
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Y 

I I ! I  
I 

Figure 2.5 Decomposition of the effective radial (6)i  and axial (6),. deformations of 
the j-th rolling element in terms of the mean bearing disp f acements (q)bm. 
Here G is the bearing outer ring geometrical center. 
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where rj is the radial distance of the inner raceway groove curvature center for the ball 

type or is the pitch bearing radius for roller type. Equations (2.1)-(2.3) in conjunction 

with the Hertzian contact stress principle [18,19,32] stated as follows yield the load- 

deflection relationships for a single rolling element . 

Q j = K n 6 j  n (2.4) 

where Qj is the resultant nsrmal load on the rolling element, and K, is the effective 

stiffness constant for the inner race-rolling element-outer race contacts and it is a 

function of the bearing geometry and material properties [18,19,31]. Note that the 

exponent n is equal to 3/2 for ball type with elliptical contacts and 10/9 for roller type 

with rectangular contacts. Previously, we have mentioned that the loaded contact angle 

aj for the roller bearing remains unchanged from the unloaded position a,, but on the 

other hand aj may alter in the ball bearing case. The sign convention is such that CCj is 

positive when measured from the bearing x-y plane towards the axial z-axis as shown in 

Figures 2.3 and 2.4, and negative otherwise. For the ball bearing of Figure 2.3, the 

loaded contact angle a, is 

A, sin a, + (6) 

A , cos a, + (6) 
tan(Crj) = zj  

rj 
(2.5) 

where (6)zj and (6)rj are given by equations (2.3a) and (2.3b). It is appropriate here to 

note that Rajab [21,22] and Young [22,23] in their derivation of the bearing stiffness 

model used an expression similar to equation (2.2) but with 6xm=pym=8zm=r~=0 in 
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Rajab' analysis and 8xm=pym=rL=0 in Young's analysis for both ball and roller 

bearings. Since always aj is given by equation (2.5) irrespective of the formulation and 

since equation (2.2) is valid only if a,=ao, their ball and roller bearings analyses are 

obviously incorrect. Expressions similar to equation (2.1)-(2.5) with minor differences 

have also been uied by Eschmann et al. [31], Jones [34] and Davis [35], but their 

intentions were to calculate static bearing forces rather than to derive the bearing 

stiffness models for vibration transmission analysis. 

2.5 DEVELOPMENT OF BEARING STIFFNESS MATRIX [K]bm 

Our proposed bearing stiffness matrix [K]bm is a global representation of the 

bearing kinematic and elastic characteristics as it combines the effects of z number of 

loaded rolling element stiffnesses in parallel given by 8j > 0. First, we need to relate the 

resultant bearing mean load vector {f)bm to the bearing displacement vector {q)bm. 

This can be achieved through vectorial sums Qj (8,,,m,p,; w = x, y, z and p = x, y) in 

equation (2.4) for all of the loaded rolling elements which lead to the following bearing 

moments { Mwbm) and forces { Fwbm} as follows 

z I cosaj cos j 

t (2.6a) 

(2.6b) 
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Replacing Qj and aj in equation (2.6) in terms of (6wmSPpm) yields the following 

explicit relationships between (f)bm and (q)bm for ball bearings 

n 
IMxbrn1 z { d [ A ,  sin a,+ (6) .I 2 + [A, cos a,+ (6) . I 2  -Ao} 

ZJ rJ 
2 2 [A,sin a,+ (6) .] + [A,  COS^,+ (6) . I  

zb m ?I rJ 
I M M y b m  i = Kn 

(2.7a) r .  {A,sin a,+ (6) 
J 

n 
(Fxbm 1 z { JA, sin a, + (6) .I 2 + [A, cos a, + (6) . I2  - A,} 

ZJ rJ 
\ z Y b m j = ~ n F  

[A, sin a, + (6) .] 2 + [A, cos a, + (6) .] 2 
ZJ rJ zb m 

[A, cos a, + (6) .] cos w 
[A, cos a,+ (6) .] sin w 

[A, sin a, + (6) .] 

rJ 

rJ 

ZJ 

(2.7b) 

and similarly for roller bearings 
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where (6)rj and (6)zj are functions of (8wm,ppm) as defined by equation (2.3). 

Approximate integral forms of equations (2.7a,b) and (2.8a,b) are often used instead of 

the summation forms to eliminate explicit dependence on y, especially in the case of 

only one or two degrees of freedom bearings [18,32]. For instance Rajab [21,22] chose 

the integral form representation but made a mathematical error in constructing the 
1 

integrand which led to further errors in his analysis. 

Now we define a symmetric bearing stiffness matrix [K]bm of dimension 6 from 

equations (2.7a,b) and (2.8ab) and by assuming that {q)ba << (q}bm 

[Kl = 
bm 

9 w, i = x, y, z (2.9) 

Here each stiffness coefficient must be evaluated at the mean point (q}bm. Explicit 

expressions for the ball bearing stiffness are as follows; note that [K]bm is symmetric 

i.e. kbiw=kbwi. c 
1 

1 
4 

a 

a 
a 
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P 
8 

6 
f 

8 
f 

* 2  

(2. lob) 

n A j  (6 
Z ( A ~  - A,)" sin w. J cos w j { J  A . - A ,  

j 
k = K n C  

bXY 

2 (Aj - A d "  (6*)rj ( 6 * ) z j ~ ~ ~  w 

j 
kbxz=Kn c (2.10c) 

r . ( A  -A,)"@*) . ( 6  * ) .sin 

(2.10d) 
Z J  j D ZJ 

j 
k bx9, = K n  C 

r * ( A  -Ao)n (6 * )rj (' * Izj c0s2vj 
Z J  j 

j 

(2.10e) 
A3 k bx9, = K n  C 

j 

(A. - A ~ ) "  sin 2~ 
z J  

j 
k = K n C  
bYY 

n A  
Z ( A ~  - AJ" 

j 

(6*lZj sin w j{ A j - A o  -'} 
kbyz=Kn c 

n *  * n A  
Z J  r*(A j (6 )rj(6 ) z jS in2Yj  { Aj -io -1) 

(2.1 Oh) 
A3 

j 
= K n  C 

j bY9, 
k 

(2.lOf) 



28 

(2. lOi) 
{ Z J  j rJ ZJ J J 

j 

* 
r . (A  - A0)"(6*) . (6 ) .sin w.cos w. 1- 

= K n C  bye, 
k 

n A .(if)* 
J 4 

Aj-  A, 
r .  (A -AJ"COS w 

Z J  j j 

j 
k = K n C  

A3 
j 

bze , 

(2. lOj) 

(2.10k) 

(2.101) 

(2.10m) 

z J  r2 ( A ~ -  ~ ~ " s i n 2 ~  

j A j  
kbOxO; = K n  C 

kb0,0 ,  =K, 

' 2  
J Izj 

r2(Aj-A,)"sin w.cos zj A . - A ,  

(2.10n) J 
1 

j 
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(2.100) 

* 
where (6*)zj, (6 )rj and Aj are defined by equation (2.1). And the roller bearing 

stiffness coefficients kbiw = kbwi are given explicidy as 

Z n n -  1 k = - K  cos2ct ,CSRj sin 2~ bxy 2 n j 
j 

Z 
n K, sin 2a ,  r 6 n - 1  cos2w 

bxe, =-3 j Rj j j 

k 

z 
k = n K , c o s * a , C  6 n -  1 sin2W 

bYY Rj j j 

(2.11a) 

(2.11b) 

(2.1 IC) 

(2.1 Id) 

(2.1 le) 

(2.1 If) 



Z n - I  
Rj 

bzz = n K ,  sin2ct.C 6 
j 

Z n - 1  = n K n  s i n 2 a o x  r 6 sin y 
bze j Rj j 

j 

Z n - 1  k = - n K , s i n 2 a o x r  6 c o s y  bze j Rj j 
j 

Z 

= nK sin a x r . sin y 
k b e , e x  j J j 

2 2 n - 1  

j 
sin 2y n 

k b e x e y  = - - - - ~ , s i n * a , C  2 r j 6Rj 
j 
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(2.11h) 

(2.1 li) 

(2.1 lj) 

(2.1 lk) 

(2.110 

(2.1 lm) 

(2.1 In) 

(2.1 lo) 

bi e = b e .e = 0 ; i=x,y,z (2.11P) 
1 

where 6Rj is defined in equation (2.2). It should be noted that all stiffness terms 

associated with the torsional degree of fi-eedom pun are zero due to the fact that an ideal 

bearing allows free rotation about the z-direction. Also, the translational stiffness 

Coefficients kbii. i=X,y,Z for 8ym=8zm=pxm=pym=O, 8xm=8zm=pxm=pym=O or 

8xm=6ym=~xm=Pym=0 are equivalent to the bearing stiffness coefficients commonly 
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used by investigators [14,15,20]. The nature of these and other features of s ] b m  will 

be discussed later in Section 2.9. 

2.6  NUMERICAL ESTIMATION OF [K]bm - 
The coefficients kbiw can be computed by one of the following two methods: I. 

directly compute kbiw given mean bearing displacement vector {q)bm employing 

equations (2.10a-p) and (2.1 la-p), or 11. numerically solve the nonlinear algebraic 

equations described by equations (2.7a,b) and (2.8a,b) to obtain {q)bm from {f}bm, 

and then evaluate kbiw per method I. Note that {f)bm may be functions of the mean 

shaft loads, bearing preloads, and shaft and casing compliances depending on the 

configuration and flexibility of the rotating mechanical system. If the bearing system is 

statically determinate, then ( f ) bm may be computed explicitly in terms of { f } sm and 

preloads using the force and moment equilibrium equations. Conversely for an 

indeterminate system, appropriate field equations for the shaft and casing plate are 

needed in addition to the equilibrium equations to obtain ( f ) b  which must also include 

shaft and casing compliances. Calculations of (f)bm and {q)bm in this case are 

simultaneous, which may be extensive especially when the system is very flexible, and 

may even require discretization using finite element or lumped mass technique. 

However, in many real machines the in-plane stiffness of the casing plate which 

supports most of the mean bearing load is much higher than the bending stiffness of the 

shaft. Hence the casing in-plane stiffness term may be neglected without contributing 

any large error to {f)bm [18,31]. And only the Euler's beam equation for a statically 

indeterminate shaft is used along with the nonlinear bearing loaddisplacement equations 

(2.7a,b) and (2.8a,b). 
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Method I is computationally direct and needs no discussion. But method I1 deals 

with as many as 10 N nonlinear algebraic equations for N bearings if the casing 

flexibility is neglected. One must choose an appropriate numerical method as the 

nonlinear algebraic equations must be solved iteratively [36,37]. In addition, the 

available numerical methods need a prior knowledge of the approximate location of the 

solution vector being sought and hence one must be careful in interpreting the numerical 

results. In this study, we adopted the Newton-Raphson method for its good 

convergence characteristic [36,37]. To implement this method, equation (2.6) for each 

- 

bearing is rearranged as 

(2.12b) 

where Hl,H2, ..., H5 are functions defined for computational reasons. For an 

indeterminate system, there are additional functions Hg,H7,...,Hv from the field 

equations. Using Taylor’s series, any function Hk in equations (2.12a,b) can be 

expanded about the solution vector X = (q}bm for a statically determinate system and X 

= [ (9) bm, (f) bm] for a statically indeterminate system as follows by neglecting 

second and higher order terms. 

T T T  
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I 
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1 
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t 
I 
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E 
1 
I 
I 

The solution for the incremental vector 6X can be obtained by setting Hk(X+6X) = 0 

per equations (2.12) and (2.13) which yields a set of linear algebraic equations. This 

vector 6X is added to the previously computed vector X given by Hk(x) = 0 for the 

next iteration until the convergence criterion, say that 6x is within a specified tolerance, 

is satisfied. Our proposed numerical scheme can be summarized as follows: (i) guess 

bearing displacement vector { q)bm and/or load vector {f)bm, (ii) compute 6X and check 

against a specified tolerance, (iii) add 6X to the previous solution vector X and repeat 

steps (i) and (ii) until the convergence criterion is satisfied. We have found that a few 

initial guess trials are required in most cases to obtain reasonable results. 

2 . 7  VALIDATION OF PROPOSED MODEL 

In order to validate our theory we compare the translational stiffness coefficients of 

the proposed bearing matrix [K]bm with published analytical and experimental results 

[ 14,20,24]. First we apply our theory to predict the nonlinear axial kbzz = kbzz(6zm) 

and radial kbrr= kbrr(tjrrn) stiffnesses as shown in Figure 2.6. Our predictions are 

found to be within 2% of Gargiulo's [I41 formulas which are commonly used for both 

ball and roller bearings. 

For the second example case, we consider the ball bearings used by Kraus et 

a1.[24] for an in-situ determination of the bearing stiffness. Using their bearing design 

parameters, we compute radial stiffness coefficient kbn as a function of the axial preload 

Fzbm. Excellent comparison between theory and experiment is seen in Figure 2.7. 
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Figure 2.6 Comparison between the proposed theory and Gargiulo's formulas [ 141 for 
axial kbzz and radial kbrr stiffness coefficients of ball and roller bearings. 
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Figure 2.7 Comparison between the proposed theory and the experimental results of 
h u s  et d.[24] for kbm as a function of the mean axial preload. 
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Finally, we compare our results for the nonlinear radial stiffness kbrr with those 

reported earlier by White E201 for both ball and roller bearings. We note discrepancies 

in Figure 2.8 between our theory and White's results. In order to explain these we now 

define kbrr using the finite difference approximation which was also used by White: 

kbrr = m b r m  / A6, = Fbrm / (6,,-rL). NOW a good match is evident in Figure 2.8 

between our k brr values and the data given by White. However, the correct formulation 

is obviously given by our proposed theory which is based on the analytical partial 

derivatives k b  = aFb, / 36, as the displacement 6m may be large. 

A 

A 

A 

2.8 PARAMETRIC STUDIES 

The proposed matrix [K]bm includes a coupling between the casing flexural 

motion and shaft bending motion which is reflected by some of the dominant off- 

diagonal, kbxey, kbyex, kbzex and kbzey, and rotational diagonal, kbexex and kbe e 
Y Y' 

stiffness coefficients; these are labeled as 'coupling coefficients' for discussion 

purposes. Such stiffness coefficients are investigated further by varying preloading 

conditions and unloaded contact angle a, for both ball (set A) and roller (set B) bearings 

whose design data are listed in Table 2.1. 

The coupling coefficients given a constant mean radial displacement 6rm (radial 

preload), as shown in Figures 2.9 and 2.10 for both ball and roller bearings 

respectively, are found to increase as a, increases and reach a maximum when a, is 

near 90°. On the other hand, the radial translational stiffness coefficients in the x and y 

directions are found to decrease as a, increases. These observations imply that for deep 

groove ball type or straight roller type bearing (a, = 0,) the radial stiffness coefficients 

kbrr are dominant, but for angular contact ball type or taper roller type bedng (q, > 00) 
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Figure 2.8 Comparison between the proposed theory kbm estimated kb,, A and White's 
analytical results [20]. a. Ball bearing. b. Roller bearing. 
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Table 2.1 Design parameters for typical ball and roller bearings used for parametric 

studies 

Parameters Set A (ball type) Set B (roller type) 

Load-deflection exponent n 3/2 10/9 

Load-deflection constant K, (N/mn) 8.5 E9 3.0 E8 

Number of rolling element Z 12 14 

Radial clearance rL (mm) O.ooOo5 0.00175 

Pitch radius tt(mm) 

Ao (D) 

19.65 

0.05 

2 1.25 

- 

t 

tt Equivalent to rj for roller bearings and rj-A& for ball bearings given in equation 

Unloaded distance between inner and outer raceway groove curvature centers (see 
Figure 2.3) 

(2.3) 
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Figure 2.9 Dominant stiffness coefficients of ball bearing set A for Oo I a, I 90° and 
given a constant mean radial bearing displacement 6m = 0.025 mm. 
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* 

Figure 2.10 

45 90 

45 

Unloaded Contact Angle (deg) 
90 

Dominant stiffness coefficients of roller bearing set B for Oo 5 a, I 90° 
and given a constant mean radial bearing displacement 6xm = 0.025 mm. 
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the coupling terms are more significant. Note that in Figure 2.10, all the stiffness 

coefficients are zero at a, = 900 for the roller type. This is due to the fact that in the 

thrust roller bearing, radial flanges are included to resist the roller motion in this 

direction which is not modeled here, and hence these stiffness coefficients must vanish. 

In addition, thrust roller bearings are designed to carry axial loads [18,31]. On the other 

hand, ball bearings have finite stiffness coefficients at a, = 900 due to the curvature of 

the raceway which provide some resistance to the radial preloads. In general, the trends 

in both ball and roller bearing stiffness properties are similar when each is subjected to 

mean radial displacement or preload. 

In the case when the bearings are subjected to mean axial displacement (axial 

preload), as shown in Figure 2.11 for the ball type and Figure 2.12 for the roller type, 

the number of nonzero stiffness coefficients are less than those seen for the radial 

preload only. Again, it is observed that both ball and roller bearings display similar 

trends. Over mid to high a, values, the coupling coefficients are found to be 

significant. The translational stiffness coefficients m relatively constant except for the 

axial stiffness which increases as a, increases. This is expected due to the inclination of 

the rolling element line of contact from the x-y plane which increases elastic support in 

the z-direction. At a, = Oo, all the stiffness coefficients for roller bearings are zero as 

there is no constraint in the axial direction. In real bearings such a constraint is provided 

by the axial flanges [18,31], however this bearing is not designed to carry any axial 

preload. 

Results for the misalignment in ball and roller bearings simulated by specifying a 

mean bearing angular displacement Pym are shown in Figures 2.13 and 2.14 

respectively. The dominant stiffness coefficients are the same as those seen for the 
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Dominant stiffness coefficients of ball bearing set A for Oo I a, 5 90° and 
given a constant mean axial bearing displacement 6, = 0.025 mm. 
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Figure 2.12 
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Dominant stiffness coefficients of roller bearing set B for Oo I a, I 90° 
and given a constant mean axial bearing displacement 6zm = 0.025 m. 
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Figure 2.13 Dominant stiffness coefficients of ball bearing set A for 0, I a, S 90, and 
given a constant misalignment Pym = 0.015 rad. 
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Figure 2.14 Dominant stiffness coefficients of roller bearing set B for Oo 5 a, I 90° 
and given a constant misalignment B,, = 0.015 rad. 
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radial preload case. For ball bearings, most of the stiffness coefficients remain constant 

for Oo I a, 5 90°. On the other hand, the stiffness coefficients for roller bearing have 

trends similar to those found for the radial preload cases. 

From the detailed parametric studies, it is concluded that the nature of [K]bm is 

dictated by the bearing type, a, and preloads. Also, the coupling coefficients &e not 

negligible in most cases as assumed previously by many investigators. 

* 

2.9  CONCLUSIONS 

Results of Section 2.8, which show similar trends for some of the cases, imply 

that there may be a systematic approach to characterize the proposed bearing stiffness 

matrix [ a b m .  From the kinematic and geometrical considerations, it is always possible 

to impose any bearing displacement vector (q)bm which denotes relative rigid body 

motions between the inner and outer rings as long as the rolling element is still within 

the elastic deformation regime. On the other hand, ah arbitrary application of (f}bm may 

not produce a singular displacement response from the bearing due to its kinematic and 

geometrical constraints. Hence, we compute [K]bm and (f}bm by systematically 

varying (q)bm. The results of all possible forms of [K]bm are listed in Table 2.2 and 

2.3 for ball and roller bearings respectively. Also included here are the current bearing 

models which are based on the translational spring descriptions; these models do not 

show any coupling. Note that the exact values of the stiffness coefficients are not given 

as these depend on specific parameters; therefore only the dominant kbij terms are listed 

for all possible bearing load configurations along with the corresponding (q}bm and q. 

Also, note that not all combinations of the bearing loads are possible which complicates 

bearing stiffness calculations further, especially for the numerical method II. Tables 2.2 

I 
I 
1 
I 
1 
I 
1 
1 
I 
I 
1 
1 
1 
I 
I 
I 
s 
I 
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Table 2.2 Comparison between the proposed and current ball bearing stiffness 
coefficients.(p = x, y; i = x, y but i f p) 

~~ ~ 

Mean Mean bearing displacement Dominant stiffness coefficients 

bearing?? 1 

loads a O = ~ o  oocaoc900 a,-900 current? proposed??? 

t Ideal boundary condition models used to describe the M n g  are not tabulated. 
t i  Here the subscript b which implies bearing has been omitted for brevity. 
tft All terms associated with eZ are zero because of the free rotation about the z axis. 
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Table 2.3 Comparison between the proposed and current roller bearing stiffness 
coefficients.(p = x, y; i = x, y but i # p) 

Mean Mean bearing displacement Dominant stiffness coefficients 

bearing?? 'I 

loads a,=00 00ca~c900 a,-900 current? proposedt t 

combinations of (qIm 

t 
$t 
ttt All terms associated with 6, are zero because of the free rotation about the z axis. 

Ideal boundary condition models used to describe the bearing are not tabulated. 
Here the subscript b which implies bearing has been omitted for brevity. 
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and 2.3 should provide some insight to the solution of the nonlinear algebraic bearing 

load-deflection equations which requires a priori knowledge of the type of solution 

being sought as outlined earlier. In most practical problems, mean bearing loads are 

typically known. This knowledge can be combined with Table 2.2 or 2.3 to formulate 

the nonlinear load-deflection equations in the simplest form by deleting all of the zero 

displacement terms. 

Tables 2.2 and 2.3 show that the coupling coefficients hxey,  kbyex, kbzex, kbzey, 

kbexex and km are found to be dominant in most of the ball bearing cases, and only 

in some of the roller bearing cases. This is essentially due to the curvature of the 

raceway in ball bearing which invariably causes the rolling element to orient itself such 

that Oo < aj < 90° which generates ball loads in the z direction as well. However, in the 

roller bearing case where aj = a,, the same phenomenon does not occur when a, = Oo 

Ye, 

or 90°, and the coupling coefficients are seen only when 06 # 00 or 90°. In fact for the 

Oo and 90° unloaded contact angle cases, the stiffness coefficients associated with x and 

y directions and those associated with the z, e,, and 8, directions do not exist 

simultaneously; the former is dominant when a, = 0 and the latter prevails when a, = 

90°. Another case of interest here is the case when bearing loads are complex as given 

by the last row in Tables 2.2 and 2.3 where all of the bearing stiffness coefficients 

unrelated to the rotational degree of freedom 8, exist. Solution to these cases may 

require a large number of iterations. 

In summary, we have developed a comprehensive bearing stiffness matrix from 

the basic principles which includes all possible rigid body degrees of freedom of a 

bearing system. This matrix has been validated partially using several analytical and 

experimental examples. Further validation of [K]bm is not possible as coupling 



50 

coefficients are never measured [24,30]. Nonetheless, our theory is general in nature 

and is applicable to even those configurations which may be different from the generic 

case shown in Figure 2.1. Further research is required to incorporate tribological issues 

[32,33] in this formulation. However the proposed stiffness matrix in its present form, 

unlike the current models, is clearly capable of explaining the nature of vibration 

transmission through bearings - this is the subject of Chapters I11 and IV of this 

dissertation which will also include further comparisons between theory and experiment. 
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CHAPTER 111 

BEARING SYSTEM STUDIES 

3 . 1  INTRODUCTION 

Current bearing models [lo-151 can not explain how the vibratory motion may be 

transmitted from the rotating shaft to the casing and other connecting structures in 

rotating mechanical equipment. For instance, experimental results [9,16,17] have 

shown that casing plate motion far a system similar to Figure 3.1 is primarily flexural or 

out-of-plane type given only the bending motion on the shaft. Using existing vibration 

models, only in-plane type motions on the casing plate are obtained. Such limitations 

associated with current bearing models have been discussed thoroughly in Chapter II of 

this dissertation. Also in Chapter 11, a new mathematical model for the precision rolling 

element bearings has been developed in order to clarify this issue qualitatively and 

quantitatively. 

This study extends the proposed bearing formulation and demonstrates its 

superiority over the existing models in vibration transmission analyses. A schematic of 

a generic system with a flexible shaft rotating at constant speed R z, flexible casing and 

mount is shown in Figure 3.1. The shaft is supported by a rolling element bearing 

which is modeled by a stiffness rrlatrix [K]bm of dimension 6 as proposed in Chapter II. 

The excitations at the rotating shaft are given in terms of an alternating load vector 

{ f(0 1 Sa = (Fjsa(t),Tjm(t) 1 = { f(t) 1 s - { f )  sm; j=x,y,z, where Fj,<t) and Tj,a(t) are the 
T 
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uxsa 

Rolling 
Element 

/ Bearing 

I I Flexible 
Casing 

Figure 3.1 Schematic representation of the vibration transmission problem. Here the 
flexible shaft is subjected to alternating forces Fjsa(t) and torques Tjsa(t) 
where j = x, y or z, is the direction and subscnpt a implies alternating. 
Also, 8 is the angular displacement and u is the translational displacement. 
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8 
I 
8 
8 
8 

alternating force and torque respectively, (f(t))s is the total load vector of dimension 6, 

( f )  sm represents the mean load vector, and superscript T implies the transpose. In the 

vibration analysis, (f)sm and bearing preloads are not included as they do not appear in 

the governing equations of the h e a r  vibration model but are used for computing [K]bm. 

The effect of bearing coupling coefficients, which are off-diagonal and rotational 

diagonal terms of [K]bm as described in Chapter 11, on the eigensolution, forced 

vibration, and vibration transmission through bearings is evaluated. Our theory will be 

illustrated and validated through 3 physical system example cases; experimental 

verification is also included. 

3 .2  LITERATURE REVIEW 

The existing bearing models which assume either ideal boundary conditions [ 10- 

121 for the shaft or translational stiffness elements [13-151 have already been discussed 

in Chapter 11. Various formulas for estimating translational stiffness coefficients 

commonly used by researchers have been compared with our proposed [K]bm 

formulation. These simple bearing models are widely used in vibration models of the 

rotor dynamic systems, which typically exclude casing and mount dynamics, to calculate 

critical speeds, responses due to shaft excitations such as mass unbalance and gear 

transmission error, and dynamic stability [lo-151. In most of these cases, the vibration 

transmission through bearings is never or not the primary issue, and moreover such 

vibration models are clearly inadequate in this regard. A satisfactory study of the 

vibration transmission through bearings in rotating system similar to Figure 3.1 is yet to 

be reported even though several researchers have considered it with limited success [20- 

22,241. In 1979 White [20] evaluated the rolling element bearing vibration transfer 
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characteristics using a two degrees of freedom @OF) vibration model of the system 

shown in Figure 3.1. His formulation is based on only the radial bearing stiffness 

coefficient kbn . He concluded that an increase in preload increases kbn and system 

. natural frequencies. He also found that the effect of bearing nonlinearity is negligible at 

higher preloads. In 1987 Kraus et al. [24] proposed a single degree of freedom model 

for a similar physical system (with a very compliant mount) to estimate kbn from 

measured vibration transmission spectra. In both of these studies, the coupling 

coefficients of [K]bm are not included. 

In 1982 Rajab E211 philosophically proposed a bearing stiffness matrix which 

consists of kbn, kbd and kbee coefficients. some of the key features of his model are 

also summarized in Reference [22]. This model is in fact a subset of our [K]bm as 

shown in Chapter I1 of this dissertation. Several errors in his analytical development 

have already been pointed out. In addition, he incorporated his bearing model in a 

system study using a commercial structural synthesis program [38]. However, based 

on our study we have inferred that he incorrectly synthesized the system model given the 

plate experimental modal data, shaft finite element model and analytical bearing model. 

Moreover, an error in this case was committed when he converted kbre and kbee 

coefficients to "effective stiffness coefficients" which he claimed to couple the shaft 

bending motion to the plate out-of-plane motion. This method excludes the bearing 

rotational degree of freedom which obviously is not COWL 

3 . 3  ASSUMPTIONS AND OBJECTIVES 

Linear discrete vibration models of the generic system shown in Figure 3.1 are 

used to incorporate [K]bm and to characterize the vibration transmission through rolling 

1 
1 
I 
1 
1 
I 
I 
1 
I 
I 
I 
1 
1 
1 
1 
1 

I 
1 

a 



55 

element bearings. The stiffness coefficients of [K]bm are evaluated using the analytical 

expressions presented in Chapter I1 of this dissertation. Effect of the gyroscopic 

moment on the shaft dynamics is not included. Since the bearing system is statically 

indeterminate, the direct stiffness formulation technique is used to obtain the system 

governing equations as opposed to the flexibility formulation. The governing equations 

for the system vibration model can be given in the matrix form as 

where [MI, [C] and [K] are the system mass, damping and stiffness matrices 

respectively, and (q(t))a and (f(t))a are defined as the generalized alternating 

displacement and applied load vectors respectively. Due to the linearity of the vibrating 

system, mean shaft loads ( f ) b m  and preloads do not directly affect the dynamic 

response of the rotating system and hence are excluded from equation (3.1). However, 

{ f)bm and bearing preloads are assumed to be constant to ensure a the-invariant [K]bm 

matrix which depends only on these mean loads or on the mean deflection operating 

points. Accordingly, only the alternating shaft loads (f(t)}= in Figure 3.1 which 

represent typical machine excitation due to the kinematic errors, mass unbalances and 

torque fluctuations are included in the forced vibration problem. The energy dissipation 

associated with the rolling element bearings is assumed to be an energy equivalent 

viscous damping matrix [c]b = 0 [K]bm where 0 is the Rayleigh damping matrix 

proportionality constant. Dynamic instabilities due to the oil whirl phenomenon and 

asymmetry of rotating elements [ 11,121 are clearly beyond the scope of this study and 

hence are not considered here. 
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The specific objectives of this chapter are to: (i) incorporate the proposed bearing 

matrix [K]bm, developed in Chapter II of this dissertation, in the h e a r  discrete vibration 

model of the rotating mechanical equipment as described by equation (3.1) using both 

the lumped parameter and dynamic finite element methods, (ii) evaluate the dynamic 

stability of the proposed bearing system model using the Liapunov's second method, 

(iii) calculate eigensolution and forced harmonic responses, and predict vibration 

transmission through rolling element bearings for three example cases, (iv) demonstrate 

the advantages of our formulation over the existing models by Kraus et al. [24] and 

White [20], and (v) validate the proposed theory by comparing analytical prediction with 

experimental data on an analogous system. 

3 . 4  SYSTEM GOVERNING EQUATIONS 

3 . 4 . 1  Method A: Lumped Parameter Model 

The proposed bearing matrix [K]bm can be easily implemented in equation (3.1). 

Note that, the coupling coefficients of [K]bm provide the capability to predict casing 

rigid body angular Bjca(t), j=x,y,z, and translational uj,,(t) motions given only the 

unidirectional transverse shaft forces. Hence we can couple the shaft motions to the 

motions of a casing of a system similar to Figure 3.1 but with rigid shaft and rigid 

casing using a lumped parameter model. The bearing preloads can now be included in 

the mean shaft load vector { f)bm by a direct vector addition as the rigid shaft can be 

assumed to be a single lumped mass for this purpose. An alternating displacement 
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displacement vectors respectively. The governing equations of motion for this generic 

vibration model with DOF = 12 are given by equation (3.1) with 

-[KI 

bm 
[ K l  + [Kl 

bm 
LOIS [ M I c  ] ; [Kl=[ - [KI bm 

[MI [OI [K 1 

0 bx0 k k k 1 kbxx bxy bxz bx0, 

[Kl = 
bm 

k bYY k byz k bye, k bye, 
0 

bzz k bz0 , k bz0 0 

kw,e, kw,ey 0 

symmetric i 0 

0 
kwYeY 

(3.2c,d) 

(3.2e) 

where the stiffness matrices [K]bm and [K], pertain to the bearing and mount 

respectively, and the matrices [MI, and [MI, are diagonal shaft and casing mass matrices 

respectively; each matrix of dimension 6. Specific examples of this method along with 

the eigensolution and forced response studies will be presented in Sections 3.7 and 3.8. 

3.4.2 Method B: Dynamic Finite Element Formulation 

Consider the dynamic finite element method of incorporating [K]bm in equation 

(3.1) especially when shaft and casing plate are elastically deformable over the 

frequency range of interest. This method is different from the lumped parameter 

formulation of Section 3.4.1 which assumes non-compliant shaft and casing. For 



58 

example, if the flexible casing plate is considered to be very large compared to the 

bearing dimensions, then the bearing nodal point on the shaft can be coupled to only one 

bearing nodal point on the plate as shown in Figure 3.2a. Accordingly, the present form 

of [ a b m  is implemented in the finite element model as a generalized stiffness matrix like 

the lumped parameter model. On the other hand, when the flexible casing plate 

dimensions are finite and of the order of bearing dimensions, then several bearing nodal 

points are considered as shown in Figure 3.2b. The discretization philosophy here 

assumes that a relative displacement vector, given by the difference between the 

averaged displacement vector of bearing nodal points on the plate and the displacement 

vector of a bearing nodal point on the shaft, is equivalent to the actual rigid body bearing 

motion. Accordingly, we divide the bearing stiffness coefficients equally among all the 

generalized stiffness elements connecting the bearing nodal points on the plate to a single 

bearing nodal point on the shaft. In the limit, where all the bearing nodal points on the 

plate are collapsed to a single nodal point, [K]bm is recovered as in the first method. 

Our finite element formulation uses conventional structural elements typically available 

in commercial software programs [39] - this will be illustrated in Section 3.9. Other 

features of this method are similar to those discussed earlier in Section 3.4.1. 

3.4.3 Other Methods 

Alternate methods of incorporating [K]bm in equation (3.1) such as finite 

difference which is similar to method B, flexibility, component mode synthesis and 

transfer matrix formulations are also possible. In the flexibility formulation, the bearing 

flexibility matrix can be obtained by inverting a subset of the bearing stiffness matrix 

[K]bms which excludes zeroes corresponding to 8, angular direction from [K]bm. In the 
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Figure 3.2 Discretization method for implementation of E]bm in finite element model 
of a system similar to Figure 3.1. Here (q(t)}sa and (q(t)}ca are the 
alternating shaft and plate displacement vectors at bearing location 
respectively. Subscript a implies alternating component. 
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transfer matrix method, the field matrix [ q b  for a bearing can be easily related to 

[KIbms- 

T T T  T where ( ( q ( t ) ) = , { f ( t ) ) = )  and ( (q( t ) ) , , ( f ( t ) )L)T arenow the statevectors 

at bearing locations on the shaft and casing plate respectively. Equation (3.3) can now 

be integrated with transfer matrices of the shaft and plate which are well documented in 

References r40.411. Direct application of these alternate methods [40-431 are beyond 

the scope of this paper and are left for further research. 

3.5  BEARING SYSTEM STABILITY 

The stability of the proposed linear, non-gyroscopic model of a bearing system 

similar to Figure 3.1, which is governed by equation (3.1) with {f(t)}a = (0), can be 

determined using several techniques such as Liapunov's stability method, Routh- 

Hurwitz criteria, or from the direct evaluation of system eigenvalues. Here the 

Liapunov's second method is used for its simplicity when applied to such a vibration 

model [44,45]. If the system matrices [MI, [C] and [K] of equation (3.1) are always 

symmetric and positive definite, then the system is asymptotically stable per Liapunov. 

The first condition is directly satisfied since [MI, [C] and [K] are symmetric. Further, 

since [MI is diagonal and consists of only positive entries, it is clearly positive definite. 

For [K], the positive definite test can be performed by evaluating its principal minor 
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determinants which is demonstrated here for the generic lumped parameter model. 

Consider the decomposition of [a given by equation (3.2) into a product of 3 matrices 

(3.4) 

where the square submatrix [O] of the appropriate dimension consists of only zero 

entries, [Q is an identity matrix of the same dimension, and [ a b m  and [K], have been 

defined in Section 3.4.1. The determinant of [K] is the product of the determinants of 

the three matrices on the right hand side of equation (3.4) 

(3.5) 

If [ K ]  > 0, w j  = 1,2 ,... ,P and P = 1.2 ,..., 12, [K] is positive definite. Other I w j l  

principal minor determinant with P<12 can be obtained by excluding the stiffness 

coefficients which are not entries in the principal submatrix of equation (3.5). Since 

I [ K ,] I = kvx*kvy*kvz*kvex-kvey* kvez > 0, it implies that equa6on (3.5) is positive 

only if I [ K 1 1 is positive. We may recall that [I(lbm has zero entries in the last row 

and in the last column corresponding to torsional 8, angular direction which forces the 

bearing system to be semidefinite. Now define a new matrix [K]bms of dimension 5 as 

a subset of [K]bm with these zeroes excluded. If [K]bms has positive principal minor 

bm 

determinants, then this system is dynamically stable because it will consist of stable 

oscillations superimposed on the mean shaft rotational motion QZ f n,(t). Further, it 

follows that [c]b,s which is proportional to [K]bms is also positive definite if [K]bms is 
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positive definite. The resulting equation obtained from the expansion of the determinant 

of [K]bms in terns of its entries kbwj, wJ=1,2,3,4,5, is given as follows in terms of the 

stability functions @j, j = 1,2,3,4. 

@4 (wI~wII~wIII~wIV = kbwI kbwn - kbwm k bww (3.6e) 

where w,, j = I,II,III,IV,V, are the dummy variables and each Wj may represent either a 

single number or a set of two numbers in equation (3.6a). The principal minor 

determinants of [I(]bms can also be derived from equation (3.6) by excluding the 
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appropriate stiffness coefficients which are not entries of the particular principal 

submatrix. Hence, the bearing system is stable if each principal minor determinants 

derived from equation (3.6) is positive. The stability of the proposed bearing model 

given in Chapter 11 of this dissertation can now be verified using these conditions. 

Inequalities associated with the stability criteria for these models are summarized in 

Tables 3.1 and 3.2 for ball and roller bearings respectively. These inequalities arise due 

to the fact that we are yet to impose any restrictions on these stiffness coefficients. In 

Chapter I1 of this dissertation, these stiffness coefficients are given as functions of 

bearing kinematic and design parameters, and hence any coefficient can not assume an 

arbitrary value as it is related uniquely to other coefficients through these parameters. 

Extensive numerical studies performed over a wide range of these parameters have 

indicated that the bearing models proposed in Chapter II are indeed stable provided the 

preloads are sufficiently large to avoid the clearance non-linearity. Figures 3.3-3.5 

illustrate examples of these bearing system stability studies for precision rolling element 

bearings whose design data are given in Table 3.3. In all of these figures, the stability 

functions Oj given in Tables 3.1 and 3.2 are found to lie within the stable region. 

3 . 6  SYSTEM RESPONSE 

The eigensolution of the linear, non-gyroscopic undamped system, formulated by 

setting (f(t)la = (0) and [C] = [O] in equation (3.1) given by method A or B, yields real 

valued natural frequencies Oj, j=1,2,3, ..., and the modal matrix [VI = [(@}I, (@}2, 

..., (@},, ...I for the stable system. Since the system is proportionally damped, the 

modal damping ratio is = o w2/2 and the damped natural frequency is 
j J 
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Table 3.1 Bearing system stability criteria for the proposed ball bearing model 
(j=xor 1,yor2; p = x o r l , y o r 2  but p# j )  

hoposed haring modelt 
see Table 2.2 

Stability criteriatt 

all non-zero except 0, terms 

f Here the subscript b which implies bearing has been omitted for brevity. 
t i  Stability functions Ql and a2 are defined by equations (3.6b) and (3.6~) and O5 is 

2 given by @5 ( ~ I ~ w I I ~ w I I I ~ w I V ~ w V  = {kbwI) kbwn- kbwm kbwIv kbwv 
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Table 3.2 Bearing system stability criteria for the proposed roller bearing model 
( j = x o r l , y o r 2 ;  p = x o r l , y o r 2  but p z j )  

~roposed bearing modelf 
see Table 2.3 

Stability criteriaff 

all non-zero except 8, terms 

f Here the subscript b which implies bearing has been omitted for brevity. 
tt Functions O1 and @, are defined by equations (3.6b) and (3.62) 
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Figure 3.3 Plot of stability criteria functions for ball and roller bearings subjected to 
mean bearing radial deflection 8xm. (a) S1 = Qs1(2,4) and S2 = <D1(1,3). 
(b) S3 =kbll <D1(3,5) + @2(35,13,15,33,44). 
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Figure 3.4 Plot of stability criteria functions for ball and roller bearings subjected to 
mean bearing axial deflection t3zm. Here, S1 = <P1(2,4) and S4 = 01(1,5). 
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Figure 3.5 Plot of stability criteria functions for ball and roller bearings subjected to 
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Table 3.3 Design parameters for typical ball and roller bearings used for system studies 

Parameters 

~~ 

Ball type Roller type 

Load-deflection exponent n 3/2 10/9 

Load-deflection constant K, (N/mn) 1.0 E9 1.0 E8 

Number of rolling element Z 12 14 

Radial clearance rL (mm) 0.00005 0.00175 

Pitch diameter (mm) 40.05 38.00 

Ao (mm) f 0.05 - 
Unloaded contact angle 06 400 1 5 O  

t Unloaded distance between inner and outer raceway groove curvature centers 
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given by o = o 4 1  - c; . Free vibration response due to the initial conditions is 

not considered as only the steady-state particular solution comsponding to sinusoidal or 

periodic load vector {f(t)}a is of primary interest. Define excitation by the Fourier series 

expansion as (f(t)}a = (f}ap eiOpt where up = pa,, o, is the fundamental 

frequency, and (f}ap is the complex Fourier coefficient load vector. The steady-state 

particular solution (q(t)}, is given by the normal mode expansion technique [40,42,43] 

as 

jd j 

P 

An alternate approach would be to assume the harmonic solution for the alternating 

(q), e'%'. Substituting this and (f(t)}a definition into displacement as (q(t))a = 

equation (3.1), we get 
P 

where the operator Adj refers to the adjoint of the dynamic stiffness matrix. Features of 

this method are summarized in References [40,42,43]. Since the vibration transmission 

across the bearing is the primary issue, we now define sinusoidal load transmissibility 

R(po) terms between two arbitrary locations I and 11 as 
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where fwra and fjIIa are components of the dynamic load vectors at two arbitrary 

locations I and I1 respectively. The accelerance A(ap) and mobility V(o,) transfer 

functions with motion at location I due to an alternating force or torque f,IIa applied at 

location II on the shaft are 

V(ap) = -A(ap) 1 ; wj = 1 2  ,..., 6 
'OP 

(3. loa) 

(3.10b) 

where 4 wIa is a component of the acceleration vector at location I. Other frequency 

response functions can also be defined in a similar manner [40,42,43]. 

3.7  EXAMPLE CASE I: RIGID SHAFT AND PLATE SYSTEM 

3 .7 .1  Vibration Models 

Consider the mechanical system shown in Figure 3.6a which is assumed to be 

freely suspended or softly mounted such that [K], = [O]. A ball bearings (see Table 

3.3) with constant axial preload is supporting a short rigid shaft subjected to a mean 

torque Tzsm # Tzsm(t) and a sinusoidal radial force Frsa(t) = Frsal eiWot applied very 

close to the bearing. A lumped parameter model with DOF = 12 is proposed in Figure 

3.6b. Conversely, the same system has also been analyzed by Kraus et al. [24] using a 

simple vibration model with DOF = 1 as shown in Figure 3 . 6 ~  with only kbrr 
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Rigid Shaft { 
BallBearing { 
Rigid Casing { 

X 

Rigid Shaft { 
Ball Bearing { 
Rigid Casing { 

U 

Free boundary condition 

Rigid Casing 

Ball Bearing 

Rigid Shaft 

Figure 3.6 Example case I: freely suspended rigid shaft, ball bearing and rigid plate 
system subjected to alternating radial force Frsa(t) applied at the shaft. (a) 
Physical system. (b) Proposed mu1 ti-degree of freedom vibration model 
with DOF = 12. (c) Simple model by Kraus et al. [24] with DOF = 1. 
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coefficient. The bearing stiffness matrix for an axially preload4 ball bearing in Figure 

3.6b has non-negligible stiffness coefficients kbxx, kb,,,, kbzz, kbexex, kbe,e,, kbxe, 

and kbyex which are functions of the mean axial preload as given in Chapter II of this 

dissertation. The system matrices of equation (3.2) can be modified for this case by 

suppressing other bearing stiffness coefficients and [K],,. It can be easily observed 

from equations (3.1) and (3.2) that 5 sets of uncoupled differential equations exist. The 

simplest three sets are homogeneous and pertain to the rigid body torsional motions 

0,(t) of the shaft and casing, and axial vibration u,(t) of the shaft-casing system which 

are of no interest here. The remaining two sets are almost identical and associated with 

either (~~(t),e,,(t)]~ or { uya(t),eXa(t)lT degrees of freedom for rigid shaft and casing. 

If the coordinate system is chosen such that Fm(t) line of action coincides with the x- 

axis, then the steady-state solution to the set of differential equations in terms of 

( uya(t),exa(t)) is trivial. Hence, the problem reduces to a semi-definite vibration 

system with DOF = 4. Accordingly, rewrite [MIs, [MI, and [K]bm in equation (3.2) in 

terms of the displacement vector (q(t))a = { uxsa(t),~y~(t),u,,(t),~yca(t))T as 

T 

(3.11) 
kwYeY bxey 1 k ms O mc 0 bxx 

[MI =[ ] ; [MIc=[ ] ; [IC] =[ 
O IC bm kbx9y s 0 I, 

First two eigenvalues corresponding to the rigid body motions in x and 0, directions are 

zero. The dimension of equation (3.11) is further reduced to DOF = 2 by defining 

relative motions sXa(t) = uxsa(t) - uxca(t) and pya(t) =Bysa(t) - 0yca(t) which turn out to 

be the bearing rigid body motions. 
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; [CI=o[KI (3.12b) - mC I C  
Y m -  m,+mc ; YI = I s + I c  bm 

.It may be noted that purely translational s,,(t) model by Kraus et al. [24] shown in 

Figure 3 . 6 ~  constitutes a subset of equation (3.12) with kbxey = 0. Eigensolution of 

equation (3.12) with [C]=[O] yields the following natural frequencies oj and modes 

{QIj  

(3.13a,b) 

(3.13~) 

- y  I k 
Y mm sk be ye I S bxx*B2 

B g =  
Y 2YI bxe 

(3.14b) 

On the other hand, the eigensolution of the single degree of freedom system is given by 

1 
1 .  

A k A 
o = and { = {  ~7 } where subscript 

2 Ymms ym m 

chosen to indicate that this solution essentially estimates o2 

2 and superscript * are 

and {$I2 in equations 

1 
I 
1 
I 
I 
I 
1 
I 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
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I 
I 
I 
I 
I 

A (3.13) and (3.14). Since $2 does not include kbxey and kbe,e,, 0 2  < 0 2  as evident 

from Table 3.4 for 3 different axial preloads. This natural mode is dominated by S,(t) 

as indicated by equation (3.14). And, the first mode {@} 1 which is predominantly 

p,,(t) is also affected by the axial preload. 

Table 3.4 Bearing stiffness coefficients and undamped natural frequencies (Hz) of 
example case I? 

115 1.84 E7 -3.05 E6 1.36 E4 156 372 34 1 
190 2.13 E7 -3.12 E6 1.70 E5 191 395 367 
285 2.43 E7 -3.09 E6 2.02 E5 221 416 392 

t Other system parameters are: mS=10.0kg, &=0.025kgm2, y,,,=0.4,ys=0.3,0=1E-6s. 

3 .7 .2  Bearing Transmissibility 

The forced harmonic response of equation (3.12) can be obtained using the 

dynamic stiffness approach given by equation (3.8) 
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It can be seen from equation (3.15) that Fxsa(t) not only excites S,(t) but &a(t) as well 

which is obviously not predicted by Kraus et al. [24]. The steady-state solution for this 

simple model is given by the following; compare it with equation (3.15a). 

ioot 
Fxsa le  8 (t) = 

(kbxxh-  wtytll mS) 
xa (3.16) 

Both models are used to determine the load transmissibility magnitude terms R(o,) 

which are computed using (G,(t),P,,(t)} , [K] and [C]. Dynamic bearing force Fxb(t) 

and moment Myba(t) magnitudes excited by the shaft force F,,(t) are given by force 

T 

transmissibility R F ~ ~ ~ , F ~ ~ ~ ( c . o ~ )  and moment transmissibility R M ~ ~ ~ , F ~ ~ ~  (0,) 

respectively. 

y m J ( l + o  2 0,) 2 2  ~ ~ + ( 1 + 0  2 2  ao) B~ 

( l + o  2 2 2  oo)  B 4 + ( l + o  2 2  w o ) ( B 5 + B 6 ) + B ,  
(0,) = (3.17a) 

xba' xsa 
R F  F 

I 
1 
I 
1 
I 
I 
1 
1 
1 
I 
I 
I 
I 
I 
I 
I 
1 
I 
I 
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R F (3.17b) 
Mybas  XIS ( l + o  2 2 2  coo) B q + ( l + b  2 2  w o ) ( B 5 + B 6 ) + B ,  

2 

B 4 = ( k b 0  Y Y  0 k b x x - k t x O )  Y (3.17~) 

Only the force transmissibility, as given below, is predicted by the simple model [24]; 

compare it with equation (3.17a). 

Figure 3.7 compares equations (3.17) and (3.18). Our model predicts higher 

R F (ao) and 02 than the simple model due to the additional constraints imposed 

by [K]bm. Also, it is clear that the simple model can not predict dynamic moment 

transfer through the bearing. The bearing transmissibility functions R(oo) predicted by 

our model for 3 different axial preloads are shown in Figure 3.8. Note that the resonant 

Fxba* xsa 
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Figure 3.7 Bearing transmissibility spectra Rfwba,Fx,,(Oo) for example case I. Here, 
R1: force transmissibility with fwb = Fxb and R2: moment transmissibility 
with fwba = Myba, as predicted by our model with DOF = 2 and the simple 
model by Kraus et al. [24] with DOF = 1. 
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Preload = 115N 
II Preload = 19ON 
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I Preload = 285N 

Preload = 115N 
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Figure 3.8 

250 500 

Excitation Frequency (Hz) 

(b) 
Effect of mean axial preload on the bearing transmissibility spectra 
R F (ao) defined by equation (3.17) for example case I. (a) Force 
transmissibility with fwba = Fxba (b) Moment transmissibility with fwba = 
Myba 

fwba* xsa 
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amplitudes vary depending on the amount of axial preload and the resonant frequencies 

increase with increasing preloads as expected. 

3 . 8  EXAMPLE CASE 11: RIGID SHAFT AND PLATE SUPPORTED ON 
FLEXIBLE MOUNTS 

3 .8 .1  Vibration Models 

The physical system of example case I is modified to include flexible mounts, [XI, 

# [O], and mean radial shaft force Frsm # Frsm(t) and Frsa(t) = F,,leiuot as shown in 

Figure 3.9a. The ball bearing (see Table 3.3) is also preloaded in the axial direction. 

This is modeled using lumped parameter theory with finite mount stiffness coefficients 

kvj, j = x, y, z, ex, 8, or 8, as illustrated in Figure 3.9b. Since the rigid shaft 

assumption still holds, Ffsm = Frbm is applied directly on the bearing in a manner similar 

to the axial preload. The bearing matrix [K]bm in Figure 3.9b has non-negligible 

Stiffness Coefficients kbxx, kbyy, kbzz, kbexex, kbe,B,, kbxey, kbye, kbxz and kbze, 

which are functions of the mean bearing load vector (f)bm= (f), or the mean bearing 

displacement vector (q)bm = (q)sm - (q)cm as given by Chapter II of this dissertation. 

Conversely, White E201 has investigated this problem using a simple model with DOF = 

2 as shown in Figure 3 . 9 ~ .  It may be noted that his bearing system model did not 

include the effect of axial preload. 

Like example case I, the governing equations (3.1) and (3.2) can be modified and 

reduced to 4 uncoupled sets of differential equations. The fmt two sets associated with 

6,,(t) and eYc,(t) are homogeneous. The third set is similar to equation (3.11) but with 

x and y subscripts interchanged, and two mount stiffness coefficients k,, and kvex 

included. However$ is still homogeneous and therefore has only trivial steady-state 

I 
i 
I 
1 
I 
I 
1 
I 
I 
I 
1 
I 
I 
I 
I 
I 
1 
I 
1 
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\ 

Rigid Shaft 

Rigid Casing { I[---$ u,(t) 

Flexible Mount { 

Figure 3.9 Example case II: rigid shaft, ball bearing and rigid plate system supported 
by flexible mounts and subjected to alternating radial force F,,(t) applied at 
the shaft. (a) Physical system. (b) Proposed multi-degree of freedom 
vibration model with DOF = 12. (c) White's vibration model [20] with 
DOF = 2. 

, 
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eyca(t)}T with [MI,, [MI,, [K]bm and [K], of equation (3.2) reduced to 

- 
0 0 I ,  

k 
kbxx bxz kbxOy 0 0  r k m  

(3.1 9c ,d) 

The vibration model by White [20] may be formulated by retaining only two equations 

corresponding to Uxsa(t) and uxca(t) and excluding all bearing and mount stiffness 

coefficients except for kbxx and k, . 
Analytical eigensolution of the undamped system is not possible since it requires 

solving for the zeroes of a 6-th order polynomial in a*. Therefore, this problem is 

solved numerically using an eigenvalue routine [42]. Using the same system parameters 

as in example case I with 3 different Fmm, natural frequencies and modes are found as 

given in Tables 3.5b and 3.5~ for both our and White's models. Corresponding bearing 

mean loads { Fxbm,Fzbm,Mybm) and relevant bearing stiffness coefficients computed 

using the method derived in Chapter 11 are listed in Table 3.5a. Tables 3.5b and 3 . 5 ~  

T 

indicate that only the first and fifth modes of our model are predicted by White's model; 

here superscript * is again used to denote estimation based on the simple model. The 

first natural frequency 01 predictions by both models are very similar. But 0 5  

prediction, whose mode is similar to the second mode of example case I, indicates a few 

discrepancies. White's model also underestimates this natural frequency due to the 

II 
1 
1 
1 
I 
I 
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Table 3.5 Results of example case II t 

(a) Computed bearing mean loads and stiffness coefficients 

Shaft Bearing loads ft Bearing stiffness coefficients 
meanload , 

44 198 0.62 2.26E7 5.84E7 -2.90E5 8.50E7 -3.10E3 1.71E4. 
94 216 1.16 2.64E7 1.14E7 -2.33E5 8.55E7 -1.36E4 1.72E4 
122 229 1.38 2.93E7 1.40E7 -1.98E5 8.60E7 -2.19E4 1.74E4 

(b) Undamped natural frequencies (Hz) 

Mean Proposed model @OF=6) Simple model @OF=2) 
shaftload I 3 c 1 

Fxbrn(N) O1 O2 O3 O4 O5 O6 hl 65 
44 93 100 111 287 350 607 97 321 
94 96 100 115 300 351 614 97 345 
122 97 100 117 308 364 620 98 362 

(b) Modes of vibration 

Proposed model @OF=6) Simple model @OF=2) 

0.217 0.031 -0.030 -0.130 0.180 0.044 0.218 0.229 
-0.035 0.203 0.003 0.022 -0.036 0.236 
1.648 0.084 . 5.966 -0.354 -1.245 -0.068 
0.171 0.084 -0.071 0.107 -0.139 -0.031 0.187 -0.178 

-0.027 0.194 0.008 -0.018 0.028 -0.165 
0.167 0.009 0.917 4.648 3.295 0.073 

t 

t t  Fxbm =Fxsm 
tit These are for mean shaft load Fxsm = Fxbm = 94 N. 

Other system parameters are: ms=lO.O kg, 1,=0.025 kgm2, % = K O  kg, 
Ic=0.03 kgm2, o=lE-6 s, kvx=1E7 N/m, kv,=1E7 N/m, kxey=l E5 Nm. 
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incomplete bearing stiffness model employed. Here again our predicted modes include 

6xa, 6,, and Pya displacements of shaft and casing components which are not 

considered by White's model. 

3.8.2 Frequency Response . 

The forced harmonic response solution is also determined numerically using the 

dynamic stiffness approach outlined in Section 3.6. Driving point (with j.= s) and cross 

point (with j = c) accelerance spectra Aqwja~,,C~o) are given in Figure 3.10 with qwja = 

uxja, uzja or eYja for both models. Here, we observe that White's [20] model 

overestimates the magnitudes of the accelerance and can not predict, unlike our model, 

axial uza(t) and eYa(t) angular motions on the shaft and casing. Figure 3.11 shows the 

bearing transmissibility spectra Rfwba,FXsa(Oo) for fwba = Fxba, Fzxa or Myba which 

indicate that transmissibilities corresponding to F,, and M y b  are not predicted using 

White's model. Such loads also serve as mechanisms for vibration transmission 

through the bearing to the casing, in addition to Fxba. The mount transmissibility 

spectra Rf (ao) as shown in Figure 3.11 indicate that Fzva and Myva are also 

transmitted to the mounts in addition to Fxva due to casing motions in x, z and 8, 
directions. The effect of mean radial bearing force Fxbm on the load transmissibilities 

R(oo) through the bearing is shown in Figure 3.12 for 3 different mean loads. We 

again observe that the resonant amplitudes and frequencies are mean load dependent 

through [K]bm. Similar trends show that an increase in mean load raises the resonant 

F wva, xsa 

frequencies although the effects are not as pronounced as those found in example case I. 



85 

1u ~ 

0 500 loo0 
Excitation Frequency (Hz) 

10'1' - "  . . - ' . . . - ' 
0 500 lo00 

Excitation Frequency (Hz) 

(b) Casing 

f I! Proposed 

(b) Casing 
l o - ; .  . . . ' . . . . 

500 lo00 
Excitation Frequency (Hz) 

10' I 

10"t' . . ~ ~ ' - - . . 
0 500 lo00 

Excitation Frequency (Hz) 

Figure 3.10 Accelerance spectra Aqwj,,~,,(~o) for example case I1 as predicted by our 
formulation and White's model [20]. (a) Driving point accelerance with 
qwja = uXw (b) Cross point accelerance with qwja = uxCZ (c) Accelerance 
with qwja = uzsa for shaft and 9w.a = Uzca for casing. (d) Accelerance with 
qwja = e,, for shaft and qwja = dyca for casing. 
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Bearing Rr,,a,F,,,(Wo) and mount Rf F (ao) transmissibility spectra 
for example case I1 as predicted by our formulation and White's model 
[20]. (a) Bearing force transmissibility with fwba = F,h. (b) Mount force 
transmissibility with fwva = FxVp (c) Force transmissibility with fwba = 
F?ba for bearing and fwva = Fzva for mount. (d) Moment transmissibility 
with f w h  = M y b  for bearing and fwva = My, for mount. 
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Figure 3.12 Effect of the mean radial bearing force Fxbm on the bearing transmissibility 
spectra Rfwb,pm,(wo) for example case II. (a) Force transmissibility with 
fwba = Fxba. (b) Force transmissibility with fwba = Fzba. (c) Moment 
transmissibility with fwba = M y b .  
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3 . 9  EXAMPLE CASE 111: EXPERIMENTAL STUDY 

3 . 9 . 1  Physical setup 

The final example case examines the experimental setup of Lin [ 171 as shown in 

Figure 3.13a. This system is similar to Figure 3.1 and consists of a 159mm long x 

25mm diameter *non-rotating shaft supported by two rolling element bearings of 25mm 

bore x 5 1 mm outer diameter. One is supported on a rectangular plate of approximate 

dimensions 762mm x 457mm x 9mm and the second is rigidly connected to the base. 

The plate is also bolted to a massive base structure. Excitation force F,, which consists 

of a mean Fysm = 445N via a preloaded spring and an alternating Fysa(t) component 

applied transversely at the free end of the shaft using a vibrating shaker. Driving and 

cross point accelerance spectra are measured at the shaft and on the plate respectively. 

Further details of this experiment are summarized in Reference [17]. 

3 .9 .2  Bearing Analysis 

Initially, only the static analysis is performed to obtain [ K ] b  for this experimental 

system using the method proposed in Chapter I1 of this dissertation. The static analysis 

neglects plate flexibility; this assumption is valid since the bearing mean loads are 

sufficiently low and do not deflect the plate. The shaft-bearing system is statically 

indeterminate as shown in Figure 3.13b. The mean force Fysm on the shaft produces 

mean bearing load vector {f )bm = (O,Fybm,Fzbm,Mxbm,O) which depends on the 

mean bearing displacement vector {q)bm = {O,8ym96zm,Pxm,O) . The proposed 

bearing matrix [K]bm includes stiffness coefficients kbxx, kbyy, kbzz, kbexex, kbe 0 
Y Y’ 

kbxey, kbyex, kbyz and kbze, which are direct functions of {q)bm. In contrast, the 

T 

T 
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Figure 3.13 Example case III. (a) Schematic of the experimental setup consisting of an 
overhung shaft, 2 ball bearings and a rectangular plate [17]. (b) Static 
model of shaft and bearings used for computing [K]bm. (c) Finite element 
model of the experimental system shown in (a). The generalized stiffness 
matrix elements for the bearing model are shown by dashed lines, 
connecting 1 node on the shaft to 4 nodes on the plate. 
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coiivenhond bearing models include only kbxx, kb,,,, and kbzz coefficients. From Figure 

3.1 3b, the force and moment equilibrium equations for this system are 

Since the shaft-bearing system is statically indeterminate, bending theory for the shaft 

arid rigid body motion constraint in the z direction are used to estimate stiffness 

coefficients 

Additionally, 6 nonlinear algebraic equations defined by the mean bearing load- 

displacement relations as given in Chapter I1 are required. These nonlinear algebraic 

equations are solved using Newton-Raphson method [36,37]. Since mean loads on 

each bearing are sufficiently large, the bearing stiffness coefficients for both bearings are 

almost identical, as listed in Table 3.6 along with other system parameters. 

. 
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Table 3.6 Design and estimated parameters for two identical rolling element bearings 
used in example case III 

* 

Load-deflection exponent n=3/2 Aot=0.05'mm kbzz=l .72E8 N/m 
Load-deflection constant Kn=6.92E9 N/mn 11-41 mm kbxey=-2.56E5 N 

Number of rolling element E 1 0  12=84 mm kb,ex=3.52E5 N 
kb,ex=4.02E5 N Radial clearance rL=5.0E-5 mm 

Pitch diamete~38.1 mm kbyy =3.69E8 N/m kbexex- -4.19E4 Nm 
Unloaded contact angle %=Oo kby,=2.04E8 N/m kbeyey=1.02E4 Nm 

kbxx = 1 ME8 N/m 

t Unloaded distance between inner and outer raceway groove curvature centers 

3 .9 .3  System Study 

We incorporate the proposed rolling element bearing stiffness matrix [K]bm in a 

finite element model which includes shaft and plate dynamics, using the formulation 

given in Section 3.4.2. The finite element model shown in Figure 3.13~ is implemented 

with a commercial software [39]. The shaft component is modeled using 2 noded 

Timoshenko beam elements with axial degrees of freedom in addition to the bending 

motion. The plate model is constructed using 4 noded quadrilateral plate elements with 

shear deformation and rotary inertia effects. Each node has 3 translational and 3 

rotational degrees of freedom. Four generalized stiffness matrices corresponding to the 

first bearing, each matrix being equivalent to 1/4 [K]bm, are used to couple the single 

shaft node to 4 plate nodes. The second bearing connects one end of the shaft to a 

grounded node. The boundary conditions for the plate along the perimeter are chosen to 



92 

be a combination of ideal clamps, um(t) = Uya(t) = u,(t) = e,(t) = eYa(t) = eza(t) = 0, 

and simple-supports u,a(t) = 0 as shown in Figure 3.13~ in order to represent the 

physical model as much as possible. Here, the energy dissipation is assumed to be 

given by the modal damping ratio [ = 0.03. A sinusoidal force Fysa(t) = Fysaleimot is 

applied at one end of the shaft to simulate the experiment. 
- 

Over the frequency range of 400Hz to 2000Hz, Figure 3.14 compares the driving 

point accelerance spectra AUysa~ysa(~o)  = ii ysa/Fysa. The simple theory shown here 

represents the conventional way of modeling bearings while other the features are 

exactly the same as in proposed model. Our predictions match measured spectra very 

well. Conversely, the simple model predicts slightly higher accelerance amplitude and 

. lower resonant frequency in the vicinity of 800Hz due to the incomplete bearing model 

used. Cross point accelerance spectra A u ~ p y , , < ~ o )  = are shown in Figures 

3.15a and 3.15b where C x a  is measured for 2 different locations on the plate as shown 

in Figure 3.13c, and excitation Fysa(t) is once again applied transversely at the shaft. 

Here, each predicted accelerance spectrum has been averaged over 4 points in the 

immediate vicinity of the measured location. Reasonable comparisons between the 

proposed model and experiment are seen. Here, the discrepancies are primarily due to 

physical setup complexities and the limitations associated with the finite element model 

in describing some of these. In Figure 3.15, the simple model is not included because it 

predicts exactly zero out-of-plane or flexural motion of the plate. Next, the cross point 

mobility level LV is defined by averaging mean square mobility spatially over the entire 

plate and over a frequency bandwidth Am. This level is directly related to the structure- 

borne noise or vibratory energy transmitted through the bearing. 
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Figure 3.14 Driving point accelerance spectra Auysa~y,a(~o)  yielded by the proposed 
model, simple model and experiment by Lin [ 171 for example case III. 
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Figure 3.15 Cross point accelerance spectra AuZca~ysa(~O)  yielded by the proposed 
model and experiment by Lin [ 171 for example case III. In this case, the 
simple model predicts zero response i,,, at the plate. (a) Point C1 (see 
Figure 3.13~). (b) Point C2 (see Figure 3.13~). 
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where ( )* implies the complex conjugate, S, is the plate surface area and Re( ) implies 

the real part of the complex number. Table 3.7 compares LV predictions by proposed 

and simple models with experimental data. It can be seen from this table that the 

proposed model predicts the experiment quite well and the simple model fails to predict 

any plate vibration. We can therefore conclude that our model is indeed valid for 

vibration transmission analyses. 

Table 3.7 Predicted and measured cross point mobility level LV as defined by equation 
(3122) 

~~~~~ 

113 Octave band Experiment (dB) Proposed Simple 
center frequency (Hz) [Linl model (a) model (a) 

400 -102 -105 -00 

500 -92 -96 -00 

630 -95 -94 -00 

800 -88 -97 -00 

lo00 -87 -95 -00 

1250 -97 - 108 -00 

1600 -108 -115 -00 

2000 - 106 - 107 -00 

11 
P 
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3.10 CONCLUDING REMARKS 

A new mathematical model for precision rolling element bearing has been 

developed and incorporated in linear system dynamic models using lumped parameter 

and finite element modeling techniques for the vibration transmission studies of a 

generic single shaft-bearing-plate system. Stability studies indicate that the bearing 

system is dynamically stable for most of the practical designs. Through 3 example cases 

including one experimental study, we have shown that our proposed vibration model is 

clearly superior to the models currently available in the literature. The current models 

tend to underestimate the resonant frequencies and force/moment transmissibilities, and 

overestimate the accelerance amplitudes as compared to our models. The proposed 

model also predicts how the vibratory bending motion on the shaft is transmitted to the 

casing, illustrated through coupling coefficients of the proposed bearing stiffness matrix 

[KIbm. Finally, the forced response trends indicated that increase in the mean bearing 

loads increases system resonant frequencies. We are extending this model to predict 

vibration transmission in rotating equipment with multiple shafts, bearings and gears. 

Other applications are evident as our theory is general in nature. However, it is 

restricted to linear systems. Bearing non-linearities are being examined in a parallel 

study [46]. 



CHAPTER IV 

GEARED ROTOR SYSTEM STUDIES 

4 . 1  INTRODUCTION 

The focus of this chapter is on the dynamic analysis of geared rotor system shown 

in Figure 4.1 which includes a spur gear pair, shafts, rolling element bearings, motor, 

load, casing and flexible or rigid mounts. For this purpose, discrete vibration models 

are developed and used to predict vibration transmission through bearings. Also, the 

effects of bearing, casing and mount dynamics on the internal rotating system dynamic 

characteristics are investigated. Traditional analysis approaches [ 15,25-291 in the gear 

dynamics area concentrate on the internal rotating system and exclude dynamic effects of 

casing and flexible mounts. Moreover, simple bearing models are typically used which 

assume either ideal boundary conditions on the shaft or translational spring elements. 

Some of the limitations associated with current bearing models have been discussed 

thoroughly in Chapters I1 and I11 of this dissertation. For instance, simple bearing 

formulations can not explain how the vibratory motion may be transmitted from the 

rotating shafts to casing and support structures, and moreover can not predict the effects 

of bearing, casing and mount dynamics on the internal rotating system adequately. 

Chapter II of this dissertation also presents a new mathematical model for the precision 

rolling element bearings to clarify this issue qualitatively and quantitatively, and Chapter 

HI utilizes the proposed bearing stiffness matrix [ q b m  formulation to analyze the 

97 
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X 

Y L z  

Rigid or Flexible Casing 

Figure 4.1 Schematic of a geared rotor system with flexible shafts and rigid spur gear 
and pinion, and supported by 4 rolling element bearings on a flexibly 

ZM mounted casing. The shaft at the motor end is driven at mean speed R 
which in turns drives the load at mean speed Q zL. This physical system IS 
symmetric about a plane intersecting both the driving and driven shafts. 
The y axis is assumed parallel to the gear mesh line of action in the pressure 
angle direction at mesh point. This schematic is used for example case I1 
and 111. 
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vibration transmission problem in a generic shaft-bearing-casing-mount system. Our 

bearing formulation has already been validated through several example cases. 

This study extends the proposed bearing formulation of Chapters 11 and III to 

examine vibration transmissibility in rotating mechanical equipment through two generic 

systems which are a spur gear pair drive and a single-stage rotor system with rolling 

element bearings as shown in Figures 4.1 and 4.2 respectively. It should be noted that 

Figure 4.2 can be treated as a special case of Figure 4.1 - this will be illustrated later. 

The physical systems are assumed to be driven at mean speed Q = QzM in Figure 

4.1 and Q in Figure 4.2; subscript M refers to the motor end. Each shaft is supported 

by two identical rolling element bearings which are modeled as stiffness matrices [K3bm 

of dimension 6 as proposed in Chapter I1 of this dissertation. These generic system may 

be excited by motor and/or load torque fluctuations, rotating mass unbalances or gear 

kinematic transmission error e(t) [29,47]; here e(t) is defined as the deviation of the 

relative gear-pinion angular position from its relative ideal location. Typical excitation at 

the shaft is defined by an alternating load vector {f(t))= = (Fj=(t),Tja(t)) = (f(t)}S - 

( f )  sm; j=x,y,z, where Fj=(t) and Tj,(t) are the alternating force and torque respectively, 

{ f(t))S is the total load vector of dimension 6, {f)sm represents the mean load vector, 

and superscript T implies the transpose. In the case of the geared drive, (f(t))= consists 

T 

of e(t) at the mesh point. Additionally, in the case of the single-stage rotor system, 

transverse forces Fm(t) and Fysa(t) due to mass unbalances are of interest. Note that in 

the dynamic analysis { f)sm and bearing preloads are not included as they do not appear 

in the governing equations of the linear vibration model but are used for computing 

[K]bm. Other effects such as bearing coupling coefficients, motor and load inertia, and 
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Figure 4.2 Schematic of the single stage rotor system with flexible shaft rotating at 
mean speed R, and supported by 2 identical rolling element bearings on a 
flexibly mounted rigid casing. This physical system is symmetric about a 
plane intersecting the shaft axial axis and parallel to the x-z plane. This 
schematic is used for example case I. 
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casing and mount dynamics are considered as the emphasis is on the overall system 

behavior. 

4 . 2  LITERATURE REVIEW 

The available literature on bearing models commonly used for internal rotor and 

gear dynamic analyses has already been discussed in Chapters I1 and 111 of this 

dissertation. Although there are numerous publications [ 10-13,15,25-291 on the modal 

analyses of geared drives and single or multiple-stage rotor systems, very little has been 

reported directly on the force transmissibility through bearings, and the dynamic effects 

of bearing, casing and mounts on the internal rotating system. 

4.2.1 Casing and Mount Dynamics 

A comprehensive review of the available vibration studies of casing and mounts, 

without the internal rotating system, has been given by Lim and Singh in 1987 [6].  

Other related publication not included in Reference [q a by Gaul and Mahrenholtz 1481 

in 1984, and Smith [49] in 1988 who have developed lumped parameter models of 

flexible machine foundations, excluding the internal rotating system dynamics. Their 

studies report rigid body translational and rotational vibration responses of the casing 

when excited by forces and/or moments. However, these studies are not specifically 

directed towards geared rotor systems, and dynamic interactions between internal 

rotating system and casing-mount system are not incorporated. In addition, Lim et al. 

[50] in 1989 have also performed a dynamic finite element analysis of a helicopter 

gearbox excluding the internal rotating system. Results again show that casing rigid 



102 

body vibration modes are dominant over the lower frequencies for a flexibly mounted 

casing, but numerous casing plate elastic modes are observed at higher frequencies. 

4.2.2 Gear Dynamics 

Current gear dynamic models include only the internal rotating system and simple 

bearing models, and typically exclude casing and mount flexibilities [15,25-291. In few 

instances casing and mounts have also been included , but restricted to cases where only 

purely radial and/or axial force on the bearing, and unidirectional verticalhorizontal rigid 

body motion on the casing are modeled, as summarized in Reference [6]. Such models 

are still inadequate in explaining how the vibration is transmitted from the gear mesh to 

the casing and into the machine foundation as witnessed in previous experiments 

[9,16,17]. 
c 

4.2 .3  Rotor Dynamics 

Similar to the geared rotor models, most of the existing rotor dynamic models 

concentrate on the internal rotating system and address issues related to stability, critical 

speeds and rotating mass unbalance response [lo-131. But a few investigators have 

included support flexibility models [51-531. For instance Lund and Wang [Sl] in 1986 

proposed an impedance matching approach to reduce the large degrees of freedom 

(DOF) required in such models. Using one example case, they reported that support 

foundation has little influence on the internal rotor resonances, but then cautioned that 

this might not be true for other systems. Vance et al. [52] in 1987 incorporated 

measured support foundation parameters in a transfer matrix model of the rotor dynamic 

system, and concluded that the omission of support flexibility may miss some of the 

i 

1 
1 
I 
I 
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rotor critical speeds of interest. Earles et al. [53] in 1988 reported, based on a finite 

element model of the support foundation, that the rotor critical speeds shift by including 

support flexibility. In aU of the above mentioned studies, the overall dynamic behavior 

of the rotor system is only investigated partially. Moreover, only a subset of journal 

bearing [K]bm coefficients is included which can not predict completely the vibration 

transmission through bearings. 

4.3 ASSUMPTIONS AND OBJECTIVES 

Linear discrete vibration models of the geared and single-stage rotor systems 

shown in Figures 4.1 and 4.2 are used to incorporate w]bm similar to Chapter III. The 

stiffness coefficients of [K]bm are evaluated using the analytical expressions presented 

in Chapter II. Each rotating shaft is modeled as an Euler beam in the lumped parameter 

model and as a Timoshenko beam in the dynamic finite element model but the effect of 

the gyroscopic moment on the shaft dynamics is not included. The casing is assumed to 

be rigid in the lumped parameter model and flexible in the dynamic finite element model. 

The rigid casing assumption is valid for many practical designs as it may be massive and 

the rotating speeds may be sufficiently low to avoid significant elastic deformation. The 

governing equations for both discrete vibration models can be given in the general 

matrix form as 

where [MI, [C] and [IC] are the system mass, damping and stiffness matrices 

respectively, and (q(t))a and (f(t))a are defined as the generalized alternating 
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displacement and applied load vectors respectively. Like Chapter III of this dissertation, 

( f )bm and bearing preloads are also assumed constant to ensure a time-invariant [K]bm 

matrix. Energy equivalent viscous damping matrix [C]b = Q [K]bm is assumed for the 

energy dissipation mechanism in the bearing where Q is the Rayleigh damping 

proportionality constant. Other features of the proposed theory given in Chapter III of 

this dissertation are retained. 

The specific objectives of this study are to: (i) incorporate the proposed bearing 

matrix [K]bm, developed in Chapter 11, in discrete vibration models of generic geared 

system of Figure 4.1 as described by equation (4.1) using lumped parameter and/or 

dynamic finite element method, (ii) conduct overall system studies by calculating 

eigensolutions and forced harmonic responses, (iii) evaluate the effects of casing and 

mount dynamics on the internal rotating system, and predict vibration transmission 

through bearings, (iv) examine the following 3 example cases: I. single-stage rotor 

system with flexible shaft supported by two identical rolling element bearings on rigid 

casing and flexible mounts as shown in Figure 4.2, II. spur gear pair system with motor 

and load inertias attached to two flexible shafts supported by four rolling element 

bearings on flexibly and rigidly mounted rigid casing as shown in Figure 4.1, and HI. 

case 11 with flexible casing and rigid mounts, and (v) demonstrate the advantages of our 

formulation over the existing vibration models. 
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4 . 4  THEORY 

4.4.1 Method A: Lumped Parameter Model 

4.4.1.1 &pat ions of Motion 
I 
I Both physical systems shown in Figures 4.1 and 4.2 are discretized using lumped 

parameter technique to yield equation (4.1) through the Lagrange's equations of motion 
- 

. 

'I [451. 

n 

t 
I 

where E, and E, is the kinetic and potential energies respectively, 

E C  = 7 (q}  IC]{ q} is the Rayleigh's dissipation function and Pw is the 

generalized force. The total system potential energy E, and kinetic energy ET are 

1 T  

obtained by adding the energy of each system component which are derived in 

subsequent sections. Equation (4.2) when applied to Figure 4.1 will lead to equation 

(4.1). It is then rearranged in terms of the following {q) to obtain the partitioned 

I 
I 
1 

(4.3b) 

(4.3c) 
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where (fl(t)}Ra (subscript R indicates rotor) consists of the alternating angular 

displacement of all rotors including gears, motor and load; (m}T and (I}T are the 

lumped mass and inertia row vectors respectively; and the operator DIAG ( } transform 

the row vector into a diagonal matrix with components of the vector corresponding to 

the diagonal elements. The stiffness sub-matrices [Kl wj = [Kl jw, w,j = 1, 2, 3, 

consist of the appropriate terms corresponding to the partitioned (q(t))= For example, 

[K] couples ( (u ( t) } sa (u (t)  } cd } degrees of freedom to itself, and [K] 12 provides 

T 

T T T  

freedom. 

Now assume that the rotary inertia of each shaft lumped mass is negligible. The 

system matrices given in equation (4.3) are therefore simplified by eliminating (e(t)}, 

degrees of freedom from (q(t))a in equation (4.3a). The resulting mass and stiffness 

matrices are 

(4.4a) 

This analytical lumped parameter formulation will be used for example cases I and II. It 

may be noted that if the effect of the rotary inertias is required, equation (4.3) can be 

used instead. 

I 
1 
I 
1 
1 

1 
I 
a 
I 
a 



107 

4.4.1.2 Svstem K inetic E nerpy 

A flexible shaft of length L, with rigid rotor of mass mR is subdivided into ns 

number of segments of equal length L, = LJn, with lumped masses at both ends of each 

segment as shown in Figures 4.3a and 4.3b for a single-spur gear mesh geared drive 

and single-stage rotor system respectively; Each lumped mass has 3 translational and 3 

rotational degrees of freedom as illustrated in Figure 4.3~. The total system kinetic 

energy is given by { 4) [MI { 4). The mass matrix [MI is diagonal and'consists 

of the lumped masses and inertias. 

T 

4.4.1.3 Shaft Stiffness Matrix 
e 

Using the direct stiffness approach, the stiffness matrix [a , of dimension 12 

corresponding to the alternating displacement vector (q(t) = { u,j(t), Uxj+l(t), uyj(t), 

uyj+l(t), uzj(t), uzj+l(t), eyj(t>, eyj+l(t), exj(t), exj+l(tX ezj(t), ezj+l(t) lT, of a generic 

shaft segment is given by 

and the non-zero elements of [ICuu]:, [ Kue]: = [ KeU] eT and [Keel: of dimension 

6 are given by the following equations (4.6), (4.7) and (4.8) respectively. 

k11= k22 = k33 = = -k12 = -k21= -k34 = -k43 = 12 EI/L 3 e .; 

k55 = = -k56 = -k5 = AE/Le (4.6) 
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a a a a a o a  

Driving Shaft 
a - a  0 0 

n,+2 

n,+l 

Driven Shaft 

0 0 0 
2n ,+2 

Bearing U 
Gear 

(a) 

Bearing 

Rotor 
Bearing Bearing 

Flexible Shaft 
U 

xi U x j + l  
X 

4 &e xj+l 

Figure 4.3 Lumped parameter model of the flexible shafts with rigid rotors. Each shaft 
is supported by 2 identical bearings on both ends. (a) Internal rotating 
system of a typical geared rotor system of Figure 4.1. (b) Internal rotating 
system of a typical single-stage rotor system of Figure 4.2. (c) 
Discretization of a shaft segment and the degrees of freedom associated with 
each lumped mass. 
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(4.8) 

where E is the modulus of elasticity, G is the shear modulus of elasticity, I is the 

moment of inertia, and J is the polar moment of inertia of the shaft. The lumped 

stiffness matrix [K], corresponding to (q(t))sa = (Uxj(t), uyj(t), uzj(t), 9yj(t), 9xj(t), 
e 

9zj(t))T, j = 1,2,3, ... for the shaft is constructed by the superposition of all [I(1 

matrices and merging terms associated with each degree of freedom. 

(4.9) 

T The non-zero elements of [KUUls, [K ue] = [K eU] and [Keels of dimension 3(n,+l) 

are similarly given by the following equations (4. lo), (4.11) and (4.12) respectively. 

k l l =  k22 = k3ns+1,3ns+l = k3ns+2,3ns+2 = 12 EI/Le 3 .  9 

k33 = k3ns+i ,3ns+ 1 = AE/L, 
3 

kwI+3,wI = kwI,wI+j = -12 EI/L, 

(4. loa) 

(4.10b) ; WI = 1,2,4,5,7,8 ,..., 3n,-1 

3 
k W n . W n  = 24 EI/L e ; WII = 4,5,7,8,10,11, ..., 3ns-1 (4.10c) 

(4.1Od) 

(4.1 Oe) 

kwm+3,wm = k,,,wm+3 = -A@, ; WIII = 3969, ...,3n, 

k W I " W V  = 2 AE/Le ; WIV = 6,8,12 ,..., 3ns 



(4.11b) z 
-kw1+3,wI - - kw1,wI+3 = 6 EI/L e ; WI = 1,2,4,5,7,8 ,..., 3ns-1 

Note that here [K], is only for a shaft, of dimension 6(n,+l). The same formulation 

should be applicable to a geared system with multiple shafts where each shaft stiffness 

niatrix is still given by [Kls Accordingly, the shaft potential energy Eu, is given as 

I m 

(4.13) 

Formulations for the motor and load rotary inertias, and flexible coupling torsional 

stiffness will be given in the later sections on example cases. 

4.4.1.4 Gear Mesh Stiffness Matrix 

For the generic geared rotor system with a spur gear pair, the driving and driven 

shafts are coupled via a linear, time-invariant spur gear mesh stiffness kh # kh(t). NOW 

we define the gear mesh coupling stiffness matrix [K]h as follows where coupled 
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torsional and translational motions of the gear and pinion are defined by { UyGa(t), 

khdG -- khdP 
2 2 

- k h  
-- khdG k h d P  

k h  2 2 
n 

khdG hd'c khdPdG 
- 4  

-- k h d G  
2 2 4 

n 

-- k h d P  - k h d P  - khdPdG - k h d i  
2 2 4 4 

(4.14) 

where & and dp are the gear and pinion diameters respectively; subscript G and P refer 

to gear and pinion respectively. Here, the y axis is taken to be parallel to the gear mesh 

force which is along the pressure angle direction at the mesh point. The potential energy 

E,, in this case is 

(4.15) 

4.4.1.5 Flexible Mount Stiffness Matrix 

The flexible mounts are represented by a diagonal stiffness matrix [K], 

corresponding to (q(t))ca which consist of effective stiffness coefficients kVw, w = x, y, 

z, e,, e,, 8,. This modeling procedure assumes that no coupling exists between the 
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casing rigid body degrees of fieedom due to the flexibility of the mounts. Accordingly, 

one has 

. w. 

(4.16) 

4.4.1.6 Beari ng: - Snffness * Matrix 

The proposed bearing stiffness matrix [K]bm corresponding to the bearing degrees 

of freedom (&a(t),Pwa(t)]T, w = x, y, z, has been formulated in Chapter II. The 

corresponding potential energy E, is 

(4.17) 

Here, ( Gwaj(t),Pwaj(t))T may be expressed in terms of (q(t))mj and (q(t))ca through a 

coordinate transformation for the j-th bearing located at R , = (xj, yj, Zj) from the 

casing center of mass. For the geared rotor system, four bearings are denoted by j = 1, 

n,+l, n,+2 and 2n,+2 as shown in Figure 4.3a, while for the single-stage rotor system 

two bearings are denoted by j = 1 and n,+l as shown in Figure 4.3b. Assuming the 

small angle approximation, (6,aj(t),Pwaj(t))T for the j-th bearing is 

+ 

{;:}= 
-1 0 0 0 0 0  1 0  0 0 z j - y j  

0 0 - 1  0 0 0  0 0  1 y j - x  0 
j 

0 - 1 0  0 0 0 0  1 0 - 2  0 x 

0 0 0 - 1  0 0 0 0 0  1 0  0 
0 0 0 0 - 1 0 0 0 0  0 1 0 
0 0 0 0 0 - 1 0 0 0 0  0 1 

j 

j 

1 
1 
I 
I 
1 
1 
I 
1 
1 
1 
1 
I 
1 
I 
I 
I 
I 
I 
I 
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4.4 .2  Method B: Dynamic Finite Element Formulation 

The dynamic finite element technique of incorporating [K]bm in equation (4.1) is 

eniployed especially when the casing plate is elastically deformable over the frequency 

range of interest, as discussed previously in Chapter 111. In this method, [K]bm is 

implemented in the dynamic finite element model as a generalized stiffness matrix. This 

stiffness element provides the only coupling between the flexible shaft and casing at the 

appropriate nodal points on both components corresponding to the bearing locations. 

Additionally, the gear mesh stiffness kh in Figure 4.1 behaves like a linear translational 

spring. Since the coupling between torsional and transverse shaft vibrations is due to kh 

only, the corresponding portion of the stiffness matrix is also given by equation (4.14). 

Our finite element formulation uses conventional structural elements typically available 

in commercial softw’are programs [39] for the shaft, casing plate and mounts - this will 

be illustrated for example cases I, II and III. Other features of this method are similar to 

those discussed earlier in Section 4.4.1. 
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4.4.3 Other Methods 

Alternate techniques of foAulating the geared rotor system dynamic problems 

such as finite difference (which is similar to method B), flexibility, component mode 

synthesis and transfer matrix formulations are also possible. It may be noted that 

Berman [54] has philosophically proposed application of the component mode synthesis 

to geared problems. Other researchers [40,41] have utilized the transfer matrix method 

in the rotor dynamic problems. However, such models need to be modified or extended 

in order to solve the overall dynamic problems discussed in this dissertation. Direct 
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application of these alternate methods [40-43,541 are beyond the scope of this 

dissertation and are left for further research. 

4 . 5  EXAMPLE CASE I: SINGLE-STAGE ROTOR SYSTEM WITH 
RIGID CASING AND FLEXIBLE MOUNTS 

4.5.1 Vibration Models 

Consider the single-stage rotor system shown in Figure 4.2 where two axially 

prdoaded identical deep groove ball bearings support a flexible rotating shaft; see Table 

4.1 for bearing parameters. The shaft is assumed to be subjected to a mean torque T,, 

f T,,,,(t) and harmonic excitation forces {F-(t) = F=l(QJ ei(lzt, Fy,(t) = Fysal(Rz) 

ei@zt-d)JT due to the rotating rotor mass unbalance. The rotor is fixed to the center of 

the shaft which coincides with the rigid casing centroid. The shaft is assumed to be 

transversely decoupled from the motor and load due to the flexible torsional couplings. 

A lumped parameter model with n,+2 lumped masses is developed according to 

the theory given in Section 4.4.1. The bearing stiffness matrix for an axially preloaded 

ball bearing has Significant Stiffness Coefficients kbxx, kbw, kba, kbexex, kbe,e,, kbxey 

and kbyex which depend on the mean axial preload. Since there is no external Fm(t) . 
force on the system and no coupling between the torsional and transverse motions of the 

shaft, the dynamics associated with { uz,j(t),uzcao,e,(t)(t),ez~(t)}T degrees of freedom (here 

subscript j is a dummy index to identify the shaft lumped masses) are decoupled from 

the others and have trivial steady-state particular solution. The system matrices of 

equation (4) can now be simplified by suppressing such degrees of freedom. Also, it 

can be easily observed from equations (1) and (4) that 2 sets of uncoupled differential 
equations exist. One set has (q(t)}a = (Uxsaj(f),Uxca(t),eyRa(f),eyca(t) 1 T which are 

excited by Fxsa(t) and the other set consists of (q(t)}a = (Uysaj(t), uyca(t), exRa(t), 

1 
I 
1 

1 
1 
I 
1 
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Table 4.1 Design parameters for deep groove ball bearings used for example cases f 

Load-deflection exponent n 

Load-deflection constant K, (N/mn) 

Number of rolling element Z 

Radial clearance rL (mm) 

Pitch diameter (mm) 

A, (mm) tt 

Unloaded contact angle 06 

3/2 

7.5 E9 

12 

0.005 - 0.02 

38.5 

0.0625 

23' - 47' 

t 

tt Unloaded distance between inner and outer raceway groove curvature centers. 

These bearings are currently being used in a NASA gear test facility [55].  Also see 
example cases 11 and III. 
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e,,(t))T with Fysa(t). The steady-state solution to these two sets will always result in 

the synchronous whirling motion of the internal rotating shaft. However, since the two 

sets of equations are similar and independent, only one set is considered in the following 

analysis. Hence, the problem reduces to a 2 dimensional vibration system with DOF = 

ns+4 which consists of a flexible shaft with rigid rotor vibrating transversely and 

coupled to a rigid casing and a flexible mounts through two bearings. Accordingly, [MI 

in equation (4.4) is rewritten in terms of the alternating displacement vector (q(t))a = 

( ~xsaj(t),uxca(t),ey~a(t),eyca(t) lT as 

where m and 1, are the lumped mass and inertia about the y axis respectively, and the 

subscript e refers to the shaft segment. To define [K] in equation (4.4), the nonzero 

ekments of IXIll ,  [KI12, CK122, WI23, IXl13 and are given by equations (4.20), 

(4.21), (4.22), (4.23), (4.24) and (4.25) respectively. 

3 
k l l  = kns+l.ns+l = l2 E1/L e + kbxx ; kns+2ps+2 = kvx + kbxx ; 

kns+2,1 = kns+2.ns+l = kl,ns+2 = kns+l,ns+2 = -kbxx 

3 kw,+l,wI - - kw,,w1+1 = -12 EI/L e ; WI = 1,2,3 ,..., ns 
3 

k W n . W n  = 24 EI/L e ; WII = 2,3, ..., ns 

(4.20a) 

(4.20b) 

(4.20~) 

(4.21) 
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2 
kl 1 = -kns+l,ns = E1/L e + kbx€ly ; kns+2,1 = kns+2ps = -kbx8y ; 

2 kns/2+ 1 .ns/2+ 1 = - h a +  I ps/2 =6EI/L, (4.24a) 

Due to the symmemc nature of [K], [K] = [K] jw T . The generalized load vector 
wj 

( f(t))a = (0, ..., Fxsa(t), 0, ...) consists of only the x component of the rotor mass 

unbalance force. The other set of linear governing equation may be obtained by 

interchanging subscripts x and y in the above formulation. Our proposed vibration 

model can also be readily reduced to the conventional rotor dynamic models, excluding 

the gyroscopic moment, internal structural damping, dissimilar bearings and other 

secondary effects, by retaining only kbxx, kbyy and kbzz in our bearing formulation. 
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4.5.2 Eigensolution 

The natural frequencies Oj and modes +, of Figure 4.2 with system parameters 

given in Table 4.2 are obtained numerically. Initially, we check for O, convergence rate 

as shown in Figure 4.4. through 0 4  and 05 by varying the number of shaft segments 

ns; it may be noted that 01.02 and 03 behave like 04, and 0 6  trend is very similar to 

0 5 .  Beyond ns = 4, there are no noticeable changes in the natural frequencies. These 

predictions are now compared with two simple lumped parameter vibration models and a 

dynamic finite element model ( E M )  in Table 4.3. One of the simple models excludes 

the effect of casing and flexible mounts, and both employ a conventional bearing model 

with only kbxx incorporated as described earlier in Section 4.5.1. The dynamic finite 

element formulation models the flexible casing constructed with four noded quadrilateral 

plate elements - a description of the methodology will be presented later in example case 

111. Our proposed theory and FEM are in excellent agreement with each other as the 

deviations are within k4% for first 6 natural frequencies. The corresponding mode 

shapes +, are shown in Figure 4.5. Note that for each mode in the x-z plane given here, 

there is a complementary mode in the y-z plane which will have the same natural 

frequency if k, Y=kVX, k,ex=k,e, and Ixc=Iyc. Using the exactly same parameters, 

results obtained from two simple models are also compared in Table 4.3. The simple 

model with casing and mount dynamics included predicts lower natural frequencies as 

compared to our prediction except for $5;  here the symbol A implies estimation using a 

simple formulation. This model gives a rough approximation for most of the modes, as 

evident from Table 4.3. Further, the simple model without casing and mounts can not 

predict all the modes below 2 kHz. In addition, $3 shifts while other modes remain 
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Table 4.2 System parameters of example case I: single-stage rotor system shown in 
Figure 4.2 

Rotor mass mR (kg) and inertia I y ~  (kgm2) 
Shaft mass m, (kg) and length L, (m) 

5.0, 1.24E-2 
1.03, 4.2E-1 

Casing mass m, (kg) and inertia I, (kgm2) 
Shaft flexural rigidity E1 (Nm2) 
Bearing axid preload Fzbm (N) 

148, 4.27 
1.626E3 

238 
kbxx* kbx8y* kbeye, t 1.37E8, -1.96E6, 4.27E4 

kVx9 k e y  4.0E8, 1.8E7 

t Computed bwj as proposed in Chapter II. Only relevant bearing coefficients are 
listed. 

Table 4.3 Comparison of natural frequencies in Hz for example case I 

Simple Models 
Proposed 1 

Mode Theory FEM AI% withoutcasing ;withcasing A2% 
~ 

1 97.2 97.2 0.0 69.5 69.4 28.6 
2 262 262 0.0 not predicted 262 0.0 
3 309 309 0.0 297 294 4.9 
4 332 334 0.6 . not ~ predicted 329 1.5 
5 1405 1365 -2.9 1442 1443 -5.7 
6 1755 1690 -3.8 1452 1453 14.0 

A,% = 100 x (FEM -Proposed Theory) / E M  
AZ% = 100 x (FEM - Simple Model) /FEM 
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Figure 4.4 Natural frequencies 04 and 05 versus the number of shaft segments, ns for 
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Figure 4.5 First 6 mode shapes of example case I: single-stage rotor system including 
rigid casing and flexible mounts. 
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nearly the same. These observations are consistent with the findings reported earlier 

[5 1-53]. 

We examine the effect of casing mass q (and inertia I,, = q) while retaining 

other parameters of Table 4.2. The fundamental frequency 01 (first transverse mode of 

the shaft-rotor system) and 03 (second transverse shaft-rotor mode) are quite insensitive 

to q. On the other hand, 0 5  and 0 6  are proportional to ( q ) - l i 2  for a light-weight 

casing given by mc/(m,+mR) < 1, but are invariant for q/(m,+mR)> 1 as shown in 

Figure 4.6a. The converse is seen for 0 2  and 0 4  which are nearly constant for 

m,/(m,+mR) < 1, but are proportional to ( q ) - l D  for q / ( q + m R )  > 1. These results 

imply that the single degree of freedom approximation can be applied to 0 5  and 643 in 

the region where mJ(m,+mR)c 1, and similarly to 02 and 04 in the other region. 
2 Next, we vary mount stiffness coefficients k,, (and kve, = L kvx) to simulate 

the effect of mount flexibility on the system. Here q and 06 are found to be unaffected 

by k,, due to the fact that the corresponding modes are predominantly shaft bending 

motion type as shown in Figure 4.5. Figure 4.6b indicates that 01 and 0 3  are 

proportional to (k,,)” for soft mounts (kvx/kbxx << 1) but are insensitive to k,, for 

stiff mounts (kvJkbxx >> 1). Conversely, 0 2  and 0 4  are proportional to (km)li2 for 

stiff mounts but remain nearly invariant for soft mounts. Similarly, each mode in its 

appropriate region can be assumed to behave like a single degree of freedom system. In 

Figure 4.6b, unlike Figure 4.6a where only one transition point at q=m,+mR exists, 2 

transition points are found. These are located below and above kvx/kbxx = 1, and 

increase with increasing shaft and bearing stiffnesses. 

Now, we examine the range of bearing preload F z h  from 100 to 5000N on oj. It 

is seen that 6.1, increases with increasing Fzbm due to an increase in the magnitudes of the 
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Figure 4.6 Effect of casing mass % normalized with respect to shaft and rotor masses, 
and mount stiffness k,, normalized with respect to kbxx on system natural 
frequencies oj for example case I. 
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bearing stiffness coefficients kbwj as shown in Table 4.4 for the two extreme Fzbm 

values; this observation is similar to those found earlier in the bearing system studies of 

Chapter III. Note that 0 2  is the most insensitive to Fzbm, and 0 3  and 0 4  show a 

moderate variation. But 01 increases by about 45% due to larger bearing motions as 

compared to 02,03 and 0 4  modes. The remaining two modes of interest are also 

affected significantly as large motions across the bearings are again found in these 

modes. Unlike the trends associated with variations of m, and kVx, here each aj 

approaches an upper bound solution, as shown in Figure 4.7 for 01, if Fzbm is 

sufficiently high to stabilize magnitudes of kbwj terms. 

Table 4.4 Effect of bearing preload Fzbm on u, (Hz) for example case I 

Preload Fzbm (N) 0 2  0 3  0 4  w6 
~~ 

100 89.4 262 305 33 1 1366 1706 

5000 130 263 32 1 346 1855 1968 
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Figure 4.7 Effect of bearing preload Fbzm on 0 1  for example case I. 
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I 4.5.3 Transmissibility 
The forced harmonic response due to the rotating rotor mass unbalance force 

FXsa(t) = Fx,l(Q,) e'*.' is obtained using the dynamic stiffness technique given earlier 

in Chapter 111. Also, recall from Chapter I11 the definition of sinusoidal load 

transmissibility functions R(Q,) between two arbitrary locations I and JI with load 

vectors fwIa(t) and fjIIa(t) as R(R,) = I fwIa(Qz)  1 / 1  fjIIa(az) I where in this case 

fjlra(t) = Fxsa(t). The bearing force R F , ~ ~ , F ~ ~ ~ ( Q , )  and moment RM F (Q,) 

transmissibility spectra are compared in Figure 4.8 for our formulation and simple 

model, given the same system of Table 4.2, both models differ only in [K]bm 

yba, xsa 

formulation. Note that the results presented are for only one bearing due to symmetry of 

the problem. We observe that the simple model predicts lower RFxba,~,,,(R,) than 

proposed model except in the vicinity of 01. On the other hand, RM ,F,,(&) is not 
Yba 

predicted at all by the simple model. This component of the bearing transmissibility 

spectra is primarily due to coefficients kbxe and kbeyey which are obviously not 

included in the simple model. Our predictions also show that higher modes over 250- 

350 Hz contribute significantly to the bearing transmissibility which are not seen in the 

force transmissibility spectra yielded by the simple model. 

Y 

Now we compare the mount load transmissibility in Figure 4.9. We observe that 

the trends of mount force transmissibility R F , ~ ~ , F ~ , ~ ( ~ , )  spectra predicted by both 

models are similar, although the simple model predicts slightly lower amplitudes above 

ol. The simple model again can not predict the moment transmission R ~ p a , ~ x s a ( R z )  

across the mounts. Unlike the bearing transmissibility spectra, here the effects of 49 

and $4 on R M ~ , , , F ~ ~ , ( R ~ )  are more significant than $1 and $2. This is mainly due to 

the large angular motions on the casing for $3 and $4. 
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Figure 4.8 Bearing transmissibility for example case I. (a) Force transmissibility 
RF F (az). (b) Moment transmissibility RM F (a,) which is not 
predicted by simple model. xba, xsa ybar xsa 
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Figure 4.9 Mount transmissibility for example case I. (a) Force transmissibility 
R F (GI,). (b) Moment transmissibility RM F (GI,). 
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Figure 4.10 Effect of mount stiffness k,, on the force transmissibilities for example 
case I. (a) Bearing. (b) Mount. 
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Figure 4.1 1 Effect of casing mass m, on the force transmissibilities for example case I. 
(a) Bearing. (b) Mount. 
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Next, we investigate the effects of m, and k,, on the bearing and mount 

transmissibilities. Figure 4.10a shows that essentially the same bearing transmissibilities 

are obtained for three k,, values. In the case of the mount transmissibility as shown in 

Figure 4. lob, the amplitudes in general decrease with lower km except near resonances. 

The casing mass m, also does not affect the bearing transmissibility significantly as 

shown in Figure 4.1 la. The mount transmissibility amplitudes increase with lower m, 

as shown in Figure 4.1 l b  except near resonances again. It may be noted that similar 

trends are observed in the bearing and mount moment transmissibility spectra. 
b 

4.6 EXAMPLE CASE 11: GEARED ROTOR SYSTEM WITH RIGID 
CASING AND FLEXIBLE MOUNTS 

4.6.1 Bearing Analysis 

Now consider the geared rotor system in Figure 4.1 with flexibly mounted rigid 

casing whose bearing and other system parameters are given in Tables 4.1 and 4.5 

respectively. Four ball bearings which support the two shafts ~IX subjected to identical 

mean axial displacement 6m. The spur gear pair drive is driven by a mean torque Tzsm 

# Tzsm(t) which also generates mean radial bearing force Fybmj and moment Mxbmj. 

The stiffness matrix [K]bm for each bearing under these loads has significant 

coefficients kbxx, kbyy, kbzz, kbexex, kbeyey, kbxey, kbyexr kbyz and kbzex- A set of 

governing nonlinear algebraic equations, consisting of 3 bearing load-displacement 

relations for each bearing as given in Chapter I1 and from the shaft bending theory is 

given by 
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Table 4.5 System parameters of example case 11: geared rotor system shown in Figure 
4. l t  

Gear and pinion masses mp = r n ~  (kg) 
Gear and pinion rotary inertias I ~ G = I ~ ~ , I , ~ = I ~  (kgm2) 

Number of geadpinion teeth 
Gearpinion Pressure Angle (degrees) 
Shaft mass ms (kg) and length L, (m) 

Casing mass m, (kg) rotary inertias I ~ ~ , I ~  (kgrn2) 
Shaft flexural rigidity E1 (Nm2) 

Effective Torsional Stiffness km,k,(Nm/rad) 
Motor and Load inertia Im, I& 
Gear mesh stiffness kh (N/m) 

Mean axial bearing displacement ljUn (N) 

Mean input torque Tzbm (Nm) 

kvy, kvex9 kvez 

kbyy. kbyOx, kbOxOx tt 

~~ 

0.5 
1.5E-4, 3.OE-4 

28 
20° 

2.8, 2.54E-1 
77, 1.5, 1.9 

1.25E4 
6.05E3, 2.45E4 
1.OOE-1, 3.35 

1.0E8 
6.OOE-4 

72 
9.7E8, 6.0E5, 1.OE6 
9.0E8, 1.4E7, 2.4E7 

t The internal rotating spur gear pair is currently being used in a NASA gear test 
facility [ S I .  

ti Only relevant bearing stiffness coefficients are tabulated. 
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Due to the physical symmetry, we assume 6 y m q  = 6ymwn and P x m q  = -Pxmwn which 

simplify the nonlinear algebraic equation set for each bearing to 

where Mxbm and Fbym are expressed in terms of a constant Sun, and variables 6ym and 

Pxm. Solution to these 2 equations may then be used to compute kbij(6zm,6ym9Pxm) 

directly. 

4.6.2 Vibration Models 

A lumped parameter m ce with Section 

4,4.1. Each shaft is divided into ns number of segments as shown in Figure 4.3a. The 

del of Figure 4.1 is developed in accorda 

system matrices of equation (4.4) are simplified by neglecting the longitudinal shaft 

motion and casing rigid body degrees of freedom uZC8(t), uxca(t) and 0yca(t). Both 

driving and driven shafts are assumed to be coupled to the motor and load respectively 

through flexible torsional couplings. Therefore, only the motor Im and load I& rotary 

inertias are considered, and the exterior portion of the shafts beyond the flexible 

couplings are modeled as purely torsional stiffness elements which are then combined 

with the flexible coupling stiffnesses. The system is excited by the static transmission 

error e(t) at the mesh point which generates gear and pinion force Fh(t) = kh e(t), parallel 

to the line of action, and torque ThG(t) = 1/2&khe(t) or Tm(t) = 1/2dpkhe(t), about the 

axial z-axis. The mass matrix [MI in equation (4.4a) in terms of (q(t)) = (uySaj(t), 

uyca(t), @xG,(t>, e,a(t>, expa(t), ezpa(t), & & ( t ) v  e u ( t > ,  exca(t), e,,(t> IT is 
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The matrices [K],,, [K],,, [KIl3, [K]22y [K]23 and [K]33 define the symmetric [K] of 

dimension 2ns+ 1 1 in equation (4.4b). Nonzero elements of [K] of dimension 2ns+3 

are 

- 

The nonzero elements of [K] 12 of 2ns+3 rows and 8 columns are 

The nonzero elements of [KIr3 of 2ns+3 rows and 2ns columns are 

I 
1 

1 
1 

i 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

a 

a 



135 

where nonzero elements given by equations (4.31b) and (4.31~) exist only if ns>2 and 

n,26 respectively. The nonzero elements of symmetric w]22 of dimension 8 are 

where k n  and kTM are the effective torsional stiffnesses due to shaft and torsional 

coupling respectively at load and motor ends, and the summation Z is over the 4 ball 

bearings denoted by j = 1, ns+l, n,+2, 2ns+2. The nonzero elements of [K]23 of 8 

rows and 2ns columns are 

(4.33a) 
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Finally, the nonzero elements of symmetric [K]33 of dimension 2n, are 

As discussed earlier, our proposed vibration model again differs from the conventional 

spur gear pair dynamic models essentially due to [K]bm formulation. The simple model 

with casing and mount dynamics can be obtained from our proposed model by retaining 

only kbxx. kbyy and kbzz in [KIbm. 

4 . 6 . 3  Eigensolution 

The natural frequencies Oj and modes @j of Figure 4.1 with system parameters 

given in Tables 4.1 and 4.5 are computed using the proposed theory, a dynamic finite 

element model, and the simple theory with and without casing and mounts. The FEM 

model includes casing flexibility - this will be described later in example case II. Our 

proposed theory differs from FEM by less than +4% for the frst six oj and is within 

- +lo% for 07 and 0 8  as shown in Table 4.6a. The corresponding natural modes are 

described in Table 4.6b. Simple models in general predict lower natural frequencies and 

deviate substantially except for 01 and 03. The simple model without any casing 
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Table 4.6 Eigensolution of example case II 

a. Comparison of natural frequencies Oj in Hz 

Simple Models 
Proposed t 4 

Mode $j Theory F'EM AI% withoutcasing withcasing A2% 

1 
2 

~~ 

0 
31.0 
480 
526 
563 
790 
1147 
1208 

~ 

0 0.0 
31.0 0.0 
480 0.0 
525 -0.2 
564 0.2 
760 -3.9 
1093 -4.9 
1100 -9.8 

~ ~~ 

0 
29.8 

not predicted 
not predicted 
not predicted 

666 
837 
694 

0 
29.1 
480 
510 
560 
650 
809 
68 1 

~ 

0.0 
6.1 
0.0 
2.9 
0.7 
14.5 
26.0 

. 38.1 

A , % =  100 x (FEM-ROPOS~~T~WIY)/FEM 
A,% = 100 x (FEM - Simple Model) /FEM 

b. Summary of mode shapes 

Mode $j Description 

1 
2 Motor-gear-pinion-load system torsional motion 
3 
4 
5 
6 
7 
8 Shaft transverse motion 

Motor-gear-pinion-load system rigid body torsional motion 

Casing rigid body rotational motion QXca 

Casing rigid body translational motion uyca 
Casing rigid body torsional motion 8, 
First shaft coupled transverse-torsional motion 
Second shaft coupled transverse-torsional motion 
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dynamics as outlined here is in excellent agreement with the results reported by 

Kahraman et al. [ 151. This provides further validation for our theory. 

The effect of casing mass m, (and inertias Ixc, Izc = q) is shown in Figure 4.12a 

for 03,05 and 07. Here 0 2  and 0 6  are unaffected by m,. On the other hand, 0 3  is 

always proportional to (mc)-lI2 except when m,/(m,+mG+mp) <e 1. This 

proportionality feature, similar to the single degree of freedom theory, is also seen for 

0 7  and 0 8  for a lightweight casing, and 04 and 0 5  for a massive casing. It may be 

noted that the trends of 0 8  and 04 are similar to and 05 respectively although they 

are not included in Figure 4.12a. Unlike example caSe I where the transition point is at 

mJ(m,+w+mp) = 1, two transition points are observed here due to the effects of the 

gear, pinion and casing rotary inertias. 

The effect of mount stiffness k,, (and k,e,, kvez = kV) on oj is given in Figure 

4.12b. We again find that 02 and 0 6  are not affected by a variation in kvy. Also, two 

transition points are found which separate a region of constant oj from the region where 

0, = (k,,)lD for some of the natural frequencies. Here 0 8  is similar to 0 7  which is 

proportional to (kVy)ln for stiff mounts but is insensitive to k,, for softer mounts. The 

converse is seen for 02 with a lower transition point. On the other hand, 0 5  = (kv,)ln 

in the region between the two transition points, and is constant elsewhere. Finally, o3 

is seen to be always increasing with k,. 

The effect of mean bearing displacement 6m is summarized in Table 4.7 for two 

extreme 6zm values. Only the natural frequencies associated with the shaft transverse 

and/or torsional motion are sensitive to 62, or preloads Fzbm(6zm ). The rate of 

increase for o, is high for low 6zm, but the rate decreases with a higher as observed 

earlier in example case I due to the stabilization of kbij. 
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loo 10' 10' 10' 

Normalized Casing Mass 

(a) 

10'' lo-' loo 10' 10' 
lo;;., - . . - 

Normalized Mount Stiffness 

(b) 

Figure 4.12 Effect of casing mass m, (normalized with respect to shaft and gear 
masses) and mount stiffness k,, (normalized with respect to kbxx) on the 
system natural frequencies a, for example case 11. 
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Table 4.7 Example case II: effect of mean bearing displacement 6, on COj (Hz) 

0.06 0 29.9 480 520 562 764 852 852 
1.00 0 31.0 480 526 563 791 1180 1215 

4.6 .4  Transmissibility Spectra 

The response due to the static transmission error excitation e(t) at the mesh point is 

computed using the same dynamic stiffness technique used for example case I. Here, 

only the fundamental harmonic of e(t) at mesh frequency O h  is included. All 

tr-ansmissibility functions are normalized with respect to the magnitude of the gear mesh 

force Fh(t) = kh e(t). Figure 4.13a and 4.13b Compare the bearing force RFyba,Fh(Wh) 

and moment RMxh,Fh(wh) transmissibility spectra as predicted by our formulation and 

simple model. It may be noted that the transmissibility spectra for all four bearings are 

similar. Although simple model compares reasonably well with our proposed theory for 
F (oh),  it is not capable of predicting RMxba,Fh(wh), as also seen previously. In 

the case of the mount transmissibility shown in Figure 4.13c, only the net moment 

MZva(t) is transmitted. The resultant vertical force Fyva(t) and moment MXva(t) are 

negligible due to the force and moment cancellations at the mount feet. The Fourier 

spectrum of the normalized dynamic transmission error p(t) = [yp(t)- 

y~(t)+(dp8p(t>/2)-(d&(t)/2)]/e(t) is shown in Figure 4.13d. Only two modes, Q2 

which is predominantly torsional vibration of the shafts and $6 which is a coupled 

RFyba* h 
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Figure 4.13 Comparison of transmissibility and normalized dynamic transmission error 
(a) Bearing force transmissibility 

F (oh) .  (b) Bearing moment transmissibility RM~,,,F,(O~) which 
(c) Mount transmissibility 

spectra for example case 11. 

is not predicted by simple model. 
RMzba,Fh(oh). (d) Normalized dynamic transmission error p(oh). 

RFybar h 
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Figure 4.14 Mount transmissibility studies for example case 11. Effect of (a) casing 
mass q, (b) mount stiffness k,, and (c) mean bearing displacement 6,, 
On RMzba,Fh(Wh)* 
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Figure4.15 Effect of mean bearing displacement 6,m on (a) bearing force 
transmissibility RFyba,Fh(Oh), (b) bearing moment transmissibility 

F (oh), and (c) normalized dynamic transmission error p(oh) for 
example case II. 
RMxba, h 
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transverse-torsional mode, affect p(%) significantly. The sixth mode produces a higher 

p(%) amplitude at a h  than 49. Additionally, the simple theory underestimates p(%) as 

compared to the proposed model. 

The effects of q, k,, and 6 ,  on the transmissibility spectra and p(%) are given 

in Figures 4.14 and 4.15. Mount transmissibility RMm,$oh) is lower for a heavier 

casing, more compliant mount and higher 6,, as shown in Figure 4.14. In addition, 

the effects of m, and k,, on RM,,, F (oh) are more prominent than those of 6zm. The 

bearing transmissibility spectra and p(ah) are affected only by 6zm as shown in Figure 

4.15, and are virtually insensitive to m, and k,, for the parameters given in Tables 4.1 

and 4.5. Vibratory force and moment transmission through the bearing are slightly 

lower for a larger 6,, due to the additional constraint provided by higher kbij values on 

the rotating shafts. Conversely, normalized dynamic transmission error p(qJ  increases 

if a larger bearing preload is specified. 

4 . 7  EXAMPLE CASE 111: GEARED ROTOR SYSTEM WITH RIGIDLY 
MOUNTED FLEXIBLE CASING 

4 .7 .1  Physical Setup 

The final example case examines the NASA gear test facility as shown in Figure 

4.16 [SI. The system parameters are equivalent to those in Tables 4.1 and 4.5 except 

for the flexible steel casing of approximate dimensions 0.33 x 0.28 x 0.25 m and plate 

thickness of 0.006m. Rigid mount feet attach the four comers of the bottom casing plate 

to a massive foundation. High precision gear and pinion are used which are identical 

with 0.006m facewidth, 0.089m diameter and 1:l ratio. Four axially preloaded high 

precision deep groove ball bearings are being used to support 0.03m diameter shafts of 

length 0.254m on the flexible casing. The input and output shafts are only coupled 
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TORSIONAL 

Figure 4.16 Example case 111: (a) Schematic of the NASA geq test facility. (b) NASA 
spur gear pair system supported on rigidly mounted flexible casing [ S I .  



146 

torsionally to the rest of the gear test facility through flexible couplings, and the geared 

system is driven by a 149kW DC motor. Vibrational level at various positions on the 

casing plate are measured using PCB 303A and Endevco 227 1 accelerometers over the 

operational speed range of 2250-5750 rpm which corresponds to the gear mesh 

frequency a h  range of 1050-2683 Hz. 

4.7.2 Vibration Models 

A dynamic finite element model of Figure 4.16b is developed using a commercial 

software (391 as outlined in Section 4.4.1. The magnitudes of kbij, which are included 

in the FEM model through a 6 dimensional generalized stiffness matrix element, are 

computed using the two nonlinear algebraic equations (4.27) which neglect the static 

elastic deformation of the casing plate. The shafts are modeled using 2 noded 

Timonshenko beam elements with axial degrees of freedom capability. Four noded 

quadrilateral plate elements with shear deformation and rotary inertia effects are used to 

construct the flexible casing. The shafts and torsional couplings exterior of the test 

gearbox are modeled as torsional stiffness elements only, and the gear, pinion, motor 

and load are incorporated in the FEM model using generalized mass and inertia 

elements. Gear mesh coupling between the gear and pinion is described by a generic 

stiffness matrix of dimension 6, similar to [K]bm. Free rotational &(t) boundary 

condition is specified at the motor and load inertias, while ideally clamped u,a=8wa=0, 

w=x,y,z, boundary points at the comer of the bottom plate are assumed to simulate the 

rigid mount feet. 

Natural frequencies and modes predicted by a similar FEM model have already 

been verified by comparison with experimental modal analysis in an earlier publication 
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by us [50]. Hence, eigensolutions will not be discussed here. But, it may be noted that 

the conventional geared rotor dynamic models with simple bearing models and without 

casing dynamics are not valid for high excitation frequencies (beyond the fxst casing 

plate elastic mode). For the forced response study, only the fundamental harmonic a h  

of the static transmission emor excitation e(t) = 3.5 sin(*t) pm computed from the gear 

tooth profile and geometry [46]. Abut  110 dynamic degrees of freedom are selected to 

minimize computational effort while still maintaining sufficient accuracy. Modal 

damping ratio = 0.05 is assumed over the frequency range of interest. 

. 

4.7.3 Casing Response 

Several locations on 3 different casing plate surfaces as shown in Figure 4.17 have 

been chosen for the experimental validation of our theory. Figure 4.18 compares 

predicted and measured mean square acceleration spectra at a h  over 0 1<Hz to 4 1<Hz 

even though measurements have been conducted only between 1 lcHz to 3 kHz. In 

general, good agreement is found between experiment and theory. Some discrepancy is 

observed above 2.4 lcHz which is due to the limitation of the FEM model in the high 

modal density regime. It may be noted that the simple theory which utilizes only 

conventional bearing models cannot predict flexural vibration of the casing plate as 

shown in Figure 4.18. A broad band vibratory energy comparison is achieved by 

averaging the mean square value of the acceleration over one-third octave bands, LA in 

dB per unit frequency bandwidth Aco, which is defined as follows 

LA, dB = 10 log 1o 
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Figure 4.17 Measurement locations on the casing plate for example case III. 
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Figure 4.18 Comparison of casing flexural vibrations for example case 111 with 6,, = 

0.08 mm. (a) Side plate supporting the bearings and facing the 
dynamometer (location 18a). (b) Top plate cover (location 18b). (c) Side 
plate with no bearings (location 18c). 
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where A* implies the complex conjugate of the acceleration. Our predictions are within 

- +5.0 dB of the measured values as shown in Table 4.8. 

The sensitivity of results to [K]bm is evaluated next. Recall that [K]bm is 

computed based on the knowledge of the mean axial displacements 62, applied to the 

bearings. This parameter has been assumed to be a constarit in our analysis although its 

exact value for the NASA experimental setup is not known. Using 2 reasonable values 

of 8zm, we obtain a range of acceleration spectra in Figure 4.19. Almost all the 

experimental data are now within this range. This explains experimental scatter 

observed in Figure 4.18 as experimental 82, may vary slightly from one steady-state 

speed to another during testing. 

In example case 11, we found that only a few coefficients in [K]bm are necessary 

depending on the excitation. Accordingly, we had used only kbyy, kbyex and kbexex. 

But in the present FEM model of case 111, we must include the entire symmetric [K]bm 

mamx of dimension 6 with no simplification at all. Now if we omit the off-diagonal 

term kbxey which is not directly excited by e(t) in the y-direction of Figure 4.1 while still 

retaining other kbij coefficients, no significant changes in our predictions are seen. 

Similarly, if the off-diagonal terms kbzy and kbzex which are related to the shaft axial 

degrees of freedom are also neglected, predicted acceleration spectra vary slightly. 

However, if kbyex and kbexex which constraint the bending motion of the shaft excited 

by e(t) are assigned zero values per simple theory, zero out-of-plane acceleration levels 

are observed. This confirms that the vibration transfer through the bearings, from the 

shaft bending motion to the casing flexural motion, is highly dependent on these two 

terms. 

I 
1 
1 
I 
I 
I 
I 
I 
I 
I 
1 
1 
I 
I 
I 
I 
I 
1 
I 



151 

Table 4.8 Comparison of LA (a) for example case nI. 

Center 
Frequency (Hz) 

1250 Theory 
Experiment 

1600 Theory 
Experiment 

2000 Theory 
Experiment 

2500 Theory 
Experiment 

-3.0 
-2.0 

-5.5 
- 10 

-1 1 
-10 

-3.0 
-7.3 

-13 
-17 

-7.0 
-8.1 

-5.4 
-7.4 

0.5 
-1.0 

-4.5 
-8.4 

-11 
- 14 

2.1 
0.0 

5.9 
4.0 
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Figure 4.19 Sensitivity of predicted casing acceleration to preload 6zm for example case 
111. (a) Side plate supporting the bearings and facing the dynamometer 
(location 18a). (b) Top plate cover (location 18b). (c) Side plate with no 
bearings (location 18c). 
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4.8 CONCLUDING REMARKS 

A generic geared rotor system model has been developed using lumped parameter 

and dynamic finite element techniques which incorporates a new mathematical model for 

precision rolling element bearings proposed earlier in Chapter 11. This system oriented 

model includes internal rotating system, rolling element bearings, flexible torsional 

couplings, motor and load, flexible or rigid casing, and compliant or massive mounts. 

The discrete shaft model excludes the effect of gyroscopic moment, but includes 

torsional, flexural and longitudinal motions. In example cases I and 11, only flexural 

and torsional motions are predicted. The effects of mount stiffness, casing mass and 

bearing preload on the overall dynamic behavior have been investigated through 3 

example cases of single-stage rotor and geared rotor systems excited by rotating mass 

unbalance at shaft frequency and kinematic transmission error excitation at mesh 

frequency respectively. The results indicate that our proposed model is clearly superior 

to the conventional simple models as given in the literature. For instance, we are able to 

predict bearing and mount moment transmissibilities and improve casing flexural 

vibration prediction significantly using our theory; measurements made on case I11 

validate our formulations partially. Conversely, the simple models are unable to account 

for any bearing moment transmissibility, and consequently predict zero flexural 

response on the casing. 

Natural frequencies of the example case 1x1 geared rotor system increase with 

higher mount stiffness and bearing preload, and lower casing mass. Transition mass 

and stiffness points which separate regimes of a natural frequency diagram are 

predicted. Through extensive parametric studies, we find that bearing transmissibilities 

may be reduced by using a higher bearing preload. However, this may result in higher 
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dynamic transmission error for the spur gear pair, mostly due to the coupled flexural- 

torsional motion. Mount transmissibility is affected by changes in casing mass, mount 

stiffness and mean bearing axial displacement, but bearing transmissibility is most 

sensitive to the mean bearing axial displacement. Similar conclusions can be drawn 

regarding the other two example cases. 

Our theory, though restricted to the linear and time-invariant dynamic system, is 

comprehensive. It can be used for analysis as well as design studies of other rotating 

mechanical systems with multiple shafts and gear pairs or multi-staged rotors. We are 

currently extending this formulation to examine the vibratory energy transfer over a 

broad band basis. 
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CHAPTER V 

STATISTICAL ENERGY ANALYSIS 

5 . 1  INTRODUCTION 

. It has been shown in Chapters 11-IV, using classical lumped parameter and 

dynamic finite element techniques, that the proposed bearing model is clearly superior to 

the existing simple models for predicting vibration transmission through bearings in a 

geared rotor system. Although the proposed models have been shown to be reliable up 

to a moderately high frequency, it is conceivable that these models are inadequate at very 

high frequencies where the modal density is high. Classical vibration models do not 

predict modes accurately in this frequency regime, and even if it is possible to do so by 

employing closely spaced nodal points, such models require a significantly large 

computational effort Moreover, the vast amount of predicted response spectra at many 

spatial points would be difficult to interpret. Accordingly, asymptotic or statistical 

methods must be adopted; typical techniques include the statistical energy analysis [56- 

601, asymptotic modal analysis [61-631 and asymptotic analysis using infinite system 

impedances [MI. 

This study concentrates on the development of a broad band vibratory energy 

transfer model for a geared rotor system with the proposed bearing model using the 

statistical energy analysis (SEA) method. This method has been applied successfully to 

a wide variety of structural dynamic and acoustic systems with large number of modes 

155 
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[56-60,65691. However several unresolved research issues still exist [57,6 1,62,70, 

711. The specific objectives of this study are to: (i) conduct modal analysis of a geared 

rotor system with flexible casing and mounts, (ii) investigate the feasibility of applying 

SEA to this problem, (iii) analyze the following 4 example cases using SEA: I. a plate- 

cantilevered rectangular beam, Il. case I with circular shaftbearing system replacing the 

cantilevered beam, III. a circular shaft-bearing-plate-mount system, and rV: a simple 

geared rotor system, and (iv) perform parametric studies to examine the characteristics 

of vibratory energy transfer through bearings, and mean square vibroacoustic response 

of the casing. The first and second example cases are revised and extended versions of 

a study performed by Lyon and Eichler [56,58]. The later two example cases are taken 

from Chapters III and rV where these systems have been studied at low frequencies. 

Experimental validations are also included. 

5 . 2  MODAL ANALYSIS OF GEAR CASING AND MOUNTS 

Analytical and experimental modal analyses of a real gear casing and mounts have 

been conducted to investigate the feasibility of using SEA. Natural frequencies o, and 

modes $, are calculated using a commercial f ~ t e  element method (FEM) program [39], 

and predictions for a rigidly mounted, stiffened gearbox are verified by the experimental 

modal analysis (EMA). 

5 . 2 . 1  Finite Element Model 

The rectangular 'gearbox as shown in Figure 5.la is approximately 0.254m x 

0.279m x 0.330m (1O.Oin x 11 .Oin x 13.0in), and all of its plates are 0.0061n (1/4 in) 

thick made of 1020 steel except the regions near the bearings which are 0.025m (l.0in) 
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0.0064m thick 
aluminium fixselage 
sheet with dimensions 
0.7620m x 0.6640m 
supported in between 
gearbox and mounts 

Figure 5.1 Gearbox with rigid and flexible mounts. 
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thick. There are four circular holes for the bearings, two at each side plate supporting 

the shafts. Figure 5.1 b illustrates the 0.254m (10.0in) tall flexible mount frame which 

is constructed from eight 0.006m (114 in) thick, 1020 steel angle beams with three 

different lengths. Fuselage sheet, as shown in Figure 5.lb, is attached horizontally to 

the flexible mount structure. The casing is supported at each comer of the base plate for 

all mounting conditions, and the mounts are attached to a rigid foundation. 

Two FEM models of the rectangular gearbox without its spur gears set, shafts and 

bearings are developed for the rigidly and flexibly mounted casings. These FEM 

models consist of four-noded quadrilateral plate elements with bending and membrane 

capabilities for the housing and attached fuselage, and two-noded shaft element with 

shear deformation and rotary inertia capabilities for the flexible mount skeleton and 

housing plate stiffeners. The boundary conditions are: (i) zero displacements and 

rotations at each comer of the base plate for the rigid mount, and (ii) similar conditions 

at each foot of the flexible mount. The interfaces between adjacent housing plates are 

assumed to be continuous. About 100 dynamic degrees of freedom are specified to 

reduce computational effort while still maintaining sufficient accuracy. Natural 

frequencies are computed up'to at least 4 lcHz to cover the gear mesh frequency regime. 

5.2.2 Experiments and Model Validation 

Modal experiments have been performed on a NASA high precision gearbox with 

the spur gear set, shafts, and ball bearings installed. An approximate configuration of 

the NASA gearbox is shown in Figure 5.2. The nominal dimensions of the gear 

housing have been given in the previous section. The variable center distance gear-shaft 

pair is supported by four ball bearings. Four side plates and a base plate are welded 
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together while the top plate is bolted to the side plates. The housing plates are stiffened 

internally, and the gear housing system is mounted rigidly to a massive foundation. 

Dynamic transfer functions are obtained only on the exterior of the gear casing structure 

using the GENRAD 2515 system [72]. For these experiments, 154 measurement points 

have been selected in the direction transverse to the plane of the casing plates with the 

reference point being approximately near the center of the top plate to avoid nodal points 

of interest. Natural frequencies and modes are then estimated using the MODAL PLUS 

program [73]. Here, the exponential method has been used to extract modal parameters 

and generate analytical functions for the transfer functions, while the circle fit method 

has been used to construct the modal vectors. 

Figure 5.3 compares predicted and measured a,, and FEM is found to be in good 

agreement with EMA. For each mode oj, two simplified illustrations are shown in 

Figure 5.3: (i) mode shape of the three visible plates ,and (ii) mode shape of the three 

nonvisible plates in an approximate isometric view. The higher modes, not shown here, 

are also given by similar combinations of plate flexural motions. Comparison between 

theory and experiment for the higher modes is made on the basis of number of modes 

within each one-third Octave bands over 500-4000 Hz in Figure 5.4a, because of the 

high number of participating modes observed. The results again indicate that FEM is in 

good agreement with EMA. 

5 .2 .3  Parametric Studies 

The rigidly mounted gear housing is observed to possess only the elastic modes of 

the casing plates. On the other hand, FEM model of the flexibly mounted gear casing 

indicates that the first six modes are translational and rotational rigid body modes of the 
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0 1  ~ 5 0 1 .  Hz o2 = 598 Hz 
(497 Hz) (584 Hz) 

0 3  =627HZ 0 4  = 752 Hz 
(639 Hz) (78 1 Hz) 

0 5  = 889 HZ 
(877 Hz) 

Figure 5.3 Mode shapes of the rigidly mounted, stiffened NASA gearbox as predicted 
by FEM (EMA results are given in parenthesis). Bold sign implies larger 
amplitude. 
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the casing as shown in Figure 5.5; for example, 01 = 54 Hz corresponds to the casing 

vibrating in the Y-direction as shown. In addition, oj are considerably lower, by 

approximately one order of magnitude as compared to those of the rigidly mounted gear 

casjng. These rigid body vibration modes result fiom the complex elastic deformations 

of the flexible mount skeleton and fuselage sheet. The casing plate natural frequencies 

are also lowered, especially the first few, when the box is mounted flexibly. Figure 

5.4b compares the number of modes of the flexibly mounted gear casing to that of the 

rigidly mounted one. High modal counts above 1 kHz are seen. 

The introduction of gear casing plate stiffeners as shown in Figure 5.2 does not 

change the nature of the mode predictions; Also, the natural frequencies for this case 

only vary slightly; lower modes are affected more by the stiffeners than the higher ones. 

Note that the numbers of modes in each 1/3 octave band over 4004000 Hz range remain 

nearly the same as evident from Table 5.1. 

Table 5.1 Number of modes for the stiffened and unstiffened gearboxes mounted 
rigidly. 

1/3 Octave Band Center 
Frequency (kHz) 0.4 0.5 0.63 0.8 1.0 1.25 1.6 2.0 2.5 3.15 4.0 

Stiffened 0 1  2 3 1  5 7 6 10 11 11 
Unstiffened 1 3  2 1 2  6 8 7 11 1 0 1 1  
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Figure 5.5 Rigid body modes of the flexibly mounted gearbox as predicted by FEM. 
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5.3 JUSTIFICATION FOR USING SEA 

5.3.1 Modal Densities 

Analytical and experimental modal analyses of the NASA gear casing clearly show 

that modal density tends to be high at higher frequencies. Although the analysis is 

restricted to a gear casing system, it is reasonable to assume that similar results are valid 

for other rotating mechanical system housings. Accordingly, SEA can be used 

. justifiably. 

Next, consider the modal densities of a shaft or beam ns and rectangular plate no 

given for bending motion with simply-supported boundary conditions [56] 

where p is the material density, A, is the plate surface area, L, is the shaft length, E is 

the modulus of elasticity, Is is the area moment of inertia of the shaft, o is the 

bandwidth center frequency, h is the plate or shaft thickness, p is the Poisson’s ratio, 

and the subscripts s and c denote shaft and plate respectively. For typical numerical 

values given later in Section 5.4 we find that: (i) n, = 0.227, and (ii) ns = 0.012 at 100 

Hz, ns = 0.004 at lo00 Hz and ns = 0.002 at 4000 Hz. Note that % >> ns as expected. 

. 

Although the shaft has a fairly low number of modes in the frequency range of interest, 

SEA is still valid since the plate modal density nc is very high. 
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5.3.2 Literature Review 

A majority of publications are on the application of the SEA procedure to 

dynamic systems with high n such as structural-acoustical interactions in a fuselage 

[56,65,74], sound transmission through panels [60], and vibratory energy transmission 

in mechanical equipment [56]. Of interest here are analytical or experimental estimation 

of SEA parameters for simple structural systems described by a flat plate, a cylinder 

and/or a shaft [56,58,59,66]. In these studies, structural connections are often assumed 

rigid such as in the ideally welded case. 

Lyon and Eichler [56,58] in 1964 and Lyon and Scharton [59] in 1965 developed 

analytical expressions for the coupling loss factor q in several connected structures, 

such as a plate bonded to a cantilevered beam [56,58]. Here q was derived assuming a 

semi-infinite beam attached to an infinite plate and by further assuming that only a 

dynamic moment coupling at the joint can describe the motion/force transmission 

phenomenon. This problem is re-examined in this study and is then extended to a 

circular shaft-bearing-plate-mount system. In addition, Lyon and Eichler [56,58] also 

developed SEA models of two structures inter-connected through a single (scalar) 

stiffness element. Typical examples include two longitudinal rods connected via a linear 

stiffness element, two discrete masses coupled by a linear spring, and a plate attached to 

a single degree of freedom resonator [56]. A similar analysis on the longitudinal 

vibration of linearly coupled rods was performed by Keane and Price [69] in 1987. 

Loss factors of typical line or point connected structures such as a plate welded to a 

cylinder, cross beams and two perpendicular plates bolted or welded together, have been 

calculated assuming ideal rigid joints [56,58,59,75,76]. But a compliant bearing system 

problem is yet to be analyzed. 



1 67 

5.4 EXAMPLE CASE I: COUPLING LOSS FACTOR OF PLATE- 
CANTILEVERED BEAM SYSTEM 

First, we attempt to rework the plate-cantilevered beam problem of Lyon and 

Eichler [56,58] as shown in Figure 5.6. Only flexural motions of the plate and beam are 

considered in this case. Accordingly, Lyon and Eichler [56,58] developed an 

expression for the coupling loss factor qsc which describes the vibratory energy transfer 

between the beam(s) and the plate(c) due to a moment coupling at the joint 

where K = d x i s  the radius of gyration, c=1IE/psis the wave speed, m is the mass 

and Re( ) implies the real part of a complex variable. The driving point moment 

impedances for the plate Z, and beam Z, are [58,77] 

where k is the wavenumber and h is the plate or beam thickness. Here, note that 2, of 

equation (5.3) differs from Lyon and Eichler's expression [56,58] in the sign of the 

imaginary part which is probably a typographical error. They assumed that lZCb>lZs1, 

K ~ = K ~ ,  cs=cc and ps=pc, and simplified equation (5.2) to yield a frequency invariant 

expression for qsc as 

rlsc = WJ(4LS) (5.4) 
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Response 

(a) Finite System 

z g o n s e  
Semi-infmite Shaft 

(b) Infinite Systems 

Figure 5.6 Schematic of example case I: a plate-cantilevered beam. (a) Experimental 
finite System. (b) Theoretical infinite system. 

I 
1 
I 
I 
I 
I 
1 
1 
I 



169 

where W, and L, are the beam width and length respectively as shown in Figure 5.6. 

However, our calculations indicate that lZ,l>lZ,l but not lZ&lZ,l for the parameters 

used by Lyon and Eichler [ S I ,  as shown in Figure 5.7a. Using equation (5.2), qsc is 

recomputed and compared with the approximate model given by equation (5.3) in Figure 

5.7b. Experimental results given by Lyon and Eichler ari: also plotted in Figure 5.7b. It 

can be seen that our calculation is better than earlier prediction. At low frequency, a 

II 
I 

discrepancy is observed between theory and experiment which is primarily due to the 

low modal density in this regime. The presence of a low natural frequency may be due 

to the compliant epoxy bond between the beam and plate. However, above the 

threshold frequency where many modes participate, shown as a vertical line in Figure 

5.7b, the slope of the least square straight line fit on the experimental data is nearly the 

same as the predicted qsc. 

5.5  EXAMPLE CASE 11: COUPLING LOSS FACTOR OF CIRCULAR 
SHAFT-BEARING-PLATE SYSTEM 

Next, we modify Figure 5.6 by inserting a ball bearing between the circular shaft 

(which replaces the beam in Figure 5.6) and the rectangular plate. Again, a semi-infinite 

shaft and an infinite plate are assumed. For SEA, we reduce the system to a plate 

subsystem and a shaft-bearing subsystem. The coupling loss factor qsc is still given by 

equation (5.2), but Z, must be m&ed to account for the compliant bearing. 

Consider a shaft with boundary conditions shown in Figure 5.8. The bearing end 

is subjected to zero transverse velocity vySa(t,z=O-)=O and a sinusoidally varying 

moment M,(t,z=Oj=M,,eiWt. Here, z=O- refers to the junction point between bearing 

and plate, and z=O+ is the junction point between the bearing and shaft. Tn the 

frequency domain, using the definition of bearing force vector 



- 
N" - 

N 
Approximate Model ------ 
Proposed 

0.6 I 

10 100 1000 
Frequency (Hz) 

(4 

53 
F 
J 
0 
u c, 

CL" 

- a 
1 
3 

Figure 5.7 

10 

10 -2 

1 

10 -3 

Low modal 
density 

4 1 I 
I 
I 
1 

A 

Experiment 

of Experimental Data 
Proposed 
Approximate Model 

- Least Square Curve Fit 

- 
--- 

I 

I 
I 

I A A A A 
I A  
I 

I 
- 4 u 

170 

. , 2  . A  3 
I U  1/3 Octave Band Center Frequency (Hz) 

(b) 

I U  - 

Comparison between Lyon and Eichler's approximation [56,58] and our 
proposed formulation for example case I. (a) Comparison of lZ,l/lZ,+Z,l. 
(b) Comparison of predicted qsc with experimental results given by Lyon 
and Eichler [56,58]. 
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M,(m, Z=O-) = M, 

v Y= (m,z=o-)=o 

)+- 
Semi-infinite Shaft 

I Bearing 

)+- 
Semi-infinite Shaft 

I Bearing 

Figure 5.8 Boundary conditions for example case II: semi-infinite shaft-bearing 
system. 
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{f(o))b=[K]bm{v(W))b/iO in terms of the velocity vector ( V ( 0 ) ) b  and the proposed 

bearing stiffness matrix [K]bm, Vysa(O,Z=O-)=O is shown to be equivalent to 

Fysa(O,o+)'(kbyO~bO.Bx)Mxsa+Vysa(o,o+) ( (kby0~b0x0x)2kb0x0~-kbyy /(ia)* 

The governing equations for Mxsa(o,z) and Fy,(w,z) of the shaft in ternls of vysa(w,z) 

(5.5) 

In general, the bounded solution for vYsa(a,z) is 

vysa(a,z) = { bl e -kZ + e -kz } (5.6) 

Using equations (5.5) and (5.6), we enforce the boundary conditions for the shaft at 

z=O+ to obtain the following closed form solution for the coefficient vector 

b, = 
ioM, 

2 E1 k, 
+ 

2 
*k by0 - ioks-A[k - kbYex ] 

EIkS bw k b e x O x  
k b e x O x  CI 

2i k L  
3 X E1 k,(l +i)-  2ik + 

b~~ kbexex  

b2 = 

2 
ok by0 x - i o k s - A [ k  - kbY8, ] 
kbexex EE: byy kbgxex 

2ik 
3 bye x 

EIk,( l+i)  -2ik + 
byy kbe,ex 

(5.7 1 
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Hence, the bearing-shaft impedance Z, is then given by 

Although M,, appears in equation (5.8), Zs i s  independent of the magnitude of MXsa 

(a, o+)  are linearly proportional to M, in equation (5.5). since vysa(o,O+) and - 
Using equations (5.2), (5.7) and (5.8), qsc is computed for several bearings 

whose stiffness coefficients are tabulated in Table 5.2. Figure 5.9 compares these 

where the material and geometrical properties of the shaft and plate are equivalent to 

dv ysa 
& 

those used by Lyon and Eichler [56,58] in example case I. For a very soft bearing, Z, 

is dominated by the bearing parameters, and hence 1&1>>12&1 is valid. This implies that 

qsc reduces to the frequency invariant expression given by equation (5.4) as shown by 

set A in Figure 5.9. On the other hand, qsc for a rigid bearing (say set B or C) is 

typically smaller than qsc for a soft bearing given by A. The extreme values of qsc, as 

kbij or bearing preload becomes very large, depend on the relative magnitudes of the 

bearing stiffness coefficients as shown in Figure 5.9 for sets D and E. Such deviation 

for a stiff bearing from set B is primarily due to the presence of off-diagonal stiffness 

coefficient such as kbyex. However i t  is found that qsc for most stiff bearings will 

approach set E in Figure 5.9 which is obviously identical to the prediction for the 

example case I using equations (5.2) and (5.3). 
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Table 5.2 Typical bearing stiffness coefficients of Figure 5.9 for example case 11. 

Set 

A 
B 
C 
D 
E 

Very Compliant Bearings (bij < 1E3) 
1E5 5E4 2E4 
5E5 8E4 5E4 
1E8 1E7 1E6 
1E8 3E7 1E7 

5 . 6  EXAMPLE CASE 111: A CIRCULAR SHAFT-BEARING-PLATE 
SYSTEM 

5.6.1 Theory 

Consider a circular shaft-bearing-plate-mount system similar to example case II but 

with a shaft of finite length as shown in Figure 5.10a. Note that this system has been 

analyzed earlier using the deterministic vibration modeling technique for low frequency 

response. Recall the unconstrained end of the non-rotating circular shaft is subjected to 

a harmonically varying force Fys(t) = FysaeiWt + Fysm, where Fysm is the mean force. 

From Chapter 111, we know that the longitudinal and torsional motions of the shaft, and 

the in-plane vibration of the plate can be neglected. Hence, the shaft bending vibration 

and plate flexural motion are of interest here. Also, the previous deterministic vibration 

models indicate that the coupling between these two motions is mainly due to the 

dynamic moment at the bearing provided the longitudinal shaft vibration is not excited. 

Accordingly, two subsystems which can be easily identified using SEA are the 

transverse modes of the shaft-bearing system and the flexural modes of the plate-mount 
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Energy Transfer 

Input Power 

ns 1 

Example case III: (a) schematic of the circular shaft-bearing-plate-mount 
system and (b) A SEA model of the shaft-bearing-plate-mount system. 
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. 

system as shown in Figure 5.10b. We now proceed to derive qsc governing the 

vibratory energy flow between these two subsystems using the driving point junction 

impedance method suggested by Lyon [56]. 

Since the rectangular plate dimension is much larger than the bearing dimension, 

the plate is again assumed infinite. Consider the vibrational power flow nSc from the 

shaft-bearing subsystem (subscript s) to the plate (subscript c), due to the uniform 

external Gaussian random force over a frequency bandwidth Aw with center frequency 

where nj and Ej (i = s, c) refer to subsystem modal density and total vibratory energy 

respectively. Since the plate is assumed to be reasonably well damped and geometrically 

large, equation (5.9) is approximated assuming nc>>n, or EJ%<<EJn, to yield 

(5.10) 

2 2 For the shaft, E, = m,<Vs> where m, is the shaft mass and cVs> is mean square shaft 

transverse velocity averaged over Aw and shaft length &. Using the expression for nSc 
given by Lyon and Eichler [58] as discussed in the previous section, qsc in terms of Z, 

and Z, is identical to equation (5.2) which is rewritten here for the circular shaft case as 

. 

(5.11) 
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For an infinite steel plate of thickness h,, the point moment impedance 2, is given by 

equation (5.3); it is rewritten as 

3 -1 
Z,(@ = 4 E h c  {1-4’ln K (%k 20 = d s )} ; kds<<l  (5.12) 

30(1 -p2) 

The shaft-bearing impedance Zs in equation (5.11) is derived next by solving the 

boundary-value problem for the system shown in Figure 5.1 la. The free end of the 

shaft has a vanishing dynamic shear force Fys,(~,z=L,)=O and bending moment 

h/Ixsa(O,z=LJ=O. The bearing end is similar to Figure 5.8. Following the same 

argument used previously for example case I1 will lead to the two boundary conditions 

described by Mxsa(CO,Z=O+)=Mxsa and Fxsa(O,z=O+) = (kbxey/kbe e )Mysa + 
vysa(W,o+) [ (kbx~y/kbey~y)2kbey~y-k~xx ) /(iW). Governing equations are still given 

by equation (5.5), but the solution for vysa(W,z) is assumed to be of the following form 

1771 

Y Y  

Using equations (5.5) and (5.13), the boundary conditions yield the following algebraic 

problem 
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M,(o, z=O-) = M, 

v ysa( 0, z= 0-) =o 
M,(cB, z=Ls) =O 

Fym(u,z=Ls) = O  

1 
Flexible Shaft 

Bearing I 
Z=O 

(0, z;=-L,) = 0 Y s a  

I 

i - z  

Flexible Shaft 
Bearing 

Z=O 
I 

z=-Ls 

Figure 5.1 1 Boundary conditions for example case III: finite shaft-bearing system. 
(a) Moment applied at the bearing end. (b) Force applied at the free end. 
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The nonzero elements of coefficient matrix [B] of dimension 4 are 

Both [B] and { b} = (bl, b, b3* b4)T can be easily obtained numerically. The bearing- 

shaft impedance Z, is still given by equation (5.8). 

The same procedure may be applied to obtain the driving point forceimpedance for 

a harmonically varying transverse force Fysa(t,z=O). Note that the origin is redefined at 

the forcing point as shown in Figure 5.1 lb  for convenience. The boundary conditions 
dv ysa are FySa(W,Z=O)=FySa, MxSa(O,Z=O)=O, VySa(O,Z=-LH)=O, and -(a - L i  ) =O. dz 

These conditions at z-Li can be rewritten for z=-Ll like the previous case to obtain 

These prescribed boundary conditions again yield a set of algebraic problem similar to 

Equation (5.14). The nonzero elements of the coefficient matrix [B] of dimension 4 are 
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(5.17) 

The right hand side vector (b) of the algebraic problem is (O,Fys,a/(EIk~),O,O)T. 

Force impedance at the driving point is then given by ~ ( O , Z = O ) = F ~ ~ ~ / V ~ ~ ~ ( ~ , O ) .  

Accordingly, the input power is ns = (1/2) Re{ (l/Z,)*} where Re( } is the real 

part of the complex variable and ( )* implies the complex conjugation. 

We can now compute the vibratory energy transfer nSc through the bearing and 

steady-state subsystem energy levels Es and E, by applying the energy balances to both 

subsystems shown in Figure 5.10b; here qcs = qsc ns/nc. 
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(5.19) 

Since E = m <V2>, the following velocity levels may be obtained at any centir 

frequency o from either equation (5.18) or (5.19) 

(5.20) 

5 . 6 . 2  Validation and Parametric Studies 

In order to validate our SEA formulation, we compare the mean square mobility 

level of the plate with experimental data reported earlier in Chapter 111. Note that 

although all nonzero bearing stiffness coefficients kbij are computed and given in Table 

3.6, only kbyy=3.69E8, kbye,=3.52E5 and kb%%=4.19E4 are used as they appear to 

be the most significant ones according to the proposed theory. Using equation (5.19), 

<Vc> is computed and compared with experimental results in Figure 5.12. Theoretical 2 

predictions for three values of dissipation loss factor qs=qC#qs(o) are given since the 

choice of structural damping is critical to the SEA analysis. It can be seen from Figure 

5.13 that the experimental data are approximately bounded by qs=0.0003 and qs=0.03. 

Here qs is also assumed to be frequency invariant which may not be valid in the 

experiment. Accordingly, comparison between theory and experiment is deemed to be 

excellent. 

Further comparison between theory and experiment can be made for the case of a 

semi-infinite shaft considered in the example case II. Using equations (5.2), (5.7) and 
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Figure 5.12 Comparison between theory and experiment [17] for example case lII with 
a finite shaft. Here plate mobility level in dB is l O l o g ~ ~ < V ~ >  re 
<Vc>=l.0(rn/s)* 2 for I~ys,=l .ON. 
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Figure 5.13 Comparison between theory and experiment [17] for example case III. 
Here theory considers a semi-infinite shaft. 
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(5.8) for qsc, the mobility levels are computed and are found to be given by straight 

lines as shown in Figure 5.13. These lines represent the asymptotic behavior of the 

system when the shaft is very long i.e. L, + -. Also, note that Figure 5.13 is 

consistent with the trends reported by Lyon and Eichler [58] for the plate-cantilevered 

beam problem. Again, most experimental data are bounded within the range given by 

qs = 0.0003 to 0.03. 

Consider the finite shaft length L,=1.32 m of high modal density n,. In Figure 

5.14 qsc is compared for a finite shaft and semi-infinite shaft. It can be seen that the 

result for the semi-infinite shaft follows the average values of the finite shaft. 

Next, the effect of bearing preload or stiffness coefficients on the mean-square 

velocity response of the plate-mount system is evaluated. Equation (5.20) is used to 

predict the curves shown in Figure 5.15 while keeping other system parameters the 

same. The bearing coefficients used in this analysis are from Tables 3.3 and 3.4. Three 

bearing preloads used here are 115N, 19ON and 285N which are referred to as low, 

medium and high preloads. We observe minor changes with preload except in the 

vicinity of 4 kHz. 
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Figure 5.14 Predicted coupling loss factors qSc for a semi-infinite and a finite shaft in 
example case In. 
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Figure 5.15 Effect of bearing preload on the normalized casing plate response (example 
case 111). 



188 

5 . 7  EXAMPLE CASE IV: A GEARED ROTOR SYSTEM 

5 . 7 . 1  Assumptions 

As the final case, we investigate a generic geared rotor system with 4 bearings as 

shown in Figure 5.16a. This system is not only a natural extension to example 111, it 

can also be treated as an gpproximate model of the NASA gear test facility in Figure 5.2; 

for gearbox details, refer to Chapter IV. The intent of the SEA analysis is to predict 

asymptotic casing plate response and radiated sound pressure from the gearbox, on an 

order of magnitude basis. Accordingly, the following assumptions are made: 

1 .  

2. 

3.  

4. 

Consider the case of 4 identical rolling element bearings and 2 identical shafts 

carrying gears. 

The vibratory source associated with the static transmission error excitation is at the 

gear mesh. The net exchange of energy through the gear mesh coupling is 

neglected and the vibratory energy is assumed to flow outward from the gear mesh 

source to the casing through shafts and bearings. The source is assumed to be far 

away from the bearings. 

Only shaft bending vibration is coupled to the casing plate flexural motion. 

Torsional modes are not included since they are relatively low in number compared 

to the shaft bending modes. In steady-state, both shafts have equal amount of 

vibratory energy (E,) associated with their bending motions which are uncoupled 

from the external motor and load. 

The portion of torsional vibratory energy which is transmitted to the load is 

incorporated in the dissipation loss factor (q,) of the shaft-bearing subsystem. 

Here qs is assumed to be given by q,=mc#qs(o) where qc#qc(o) is the loss 
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Figure 5.16 Example case IV: (a) a generic geared rotor system with casing and mounts 
and (b) boundary conditions for a finite shaft-bearing system. 
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factor of the casing; y is expected to be higher than one due to additional losses at 

the bearings and load. 

Bearing dimensions are assumed to be much smaller than the wavelength on the 

casing plate. Also, bearings are not expected to be exchanging vibratory energy. 

Modal densities of shaft % and casing plate Q are given by equation (5.1). 

A diffuse vibration field is assumed for the external casing-mount system. The 

energy dissipation mechanism for this system includes acoustic energy radiated 

from the plate in addition to the structirral damping. 

5 .  

6 .  

7 .  

Application of the SEA principle will result in 2 subsystems, one internal 

consisting of 2 shafts and 4 bearings and one external consisting of 2 casing plates and 

mounts similar to Figure 5.10b. The internal subsystem in this case can store the total 

vibratory energy of 2 shafts. Vibratory energy transfer as viewed through Figure 5.10b 

represents the algebraic sum of the energy transfers through 4 bearings. 

5.7.2 Coupling Loss Factor 

The coupling loss factor qsc between the internal (shafts-bearings) and external 

(casing) systems is’derived, based on the formulation given by equations (5.11) and 

(5.12). This implies that vibratory energy transfer is associated with only the dynamic 

moment at the bearing, and the casing plate is infinite with respect to the bearing 

dimensions. The driving point impedance of the shaft Z, is derived next given the 

boundary conditions shown in Figure 5.16b. At the left bearing end (z=O-), 

vysa(o,z=O-)=O, and Mxsa( o,z=O-)=MxSa which are equivalent to Mxsa( o,z=O+)=MXsa, 
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Using equations (5.5) and (5.13), the above boundary conditions are evaluated to 

formulate an algebraic problem of the type given by equation (5.14). The nonzero 

elements of the coefficient matrix [B] are . 

bYY 

B21=B22=-B23=-B -1 ; 
- ikaL, 

24- 

B 3 1 = ( - j k  s k be,e, + k '  bye, + E I k t ) e  ? 

2 ik,L, B 32 = (jk k + k  + E I k s ) e  wxex bye, ? 

B 3 3 = ( -  k k + k  - E I k , ) e  2 - k a L i  , 
wxex bye, ? 

+ k  -EIks)e  2 ksLa . 

byex bYY ? 

34 = (kskbexex bye, ? 

B,,=(ik k - k  - i E I k s ) e  3 -ik,L, 
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(5.22) 

The right hand side vector ( b )  of equation (5.14) is Mysa( kbyex/kbexex, 

io/(EIkf),O,O) , and the shaft impedance Z, is evaluated numerically using equation 

(5.8). 

T 

5.7.3 Vi broacoustic Response 

Consider the total energy dissipation by the casing as the sum of the energy terms 

associated with structural damping dissipation and energy escape via sound radiation. 

Hence the total dissipation loss factor q c ~  for the casing of area A, and mass m, is 

(5.23) 

where zo is the characteristic impedance of the surrounding medium, and 6, is the 

radiation efficiency of the casing. In this analysis, two radiation efficiency models are 

used: (i) cr,l = 1.0 for an ideal radiator as for many gearboxes the measured radiation 

efficiency has been found to be close to unity [78], and (ii) C T , ~  for a simply-supported 

rectangular plate [79]. Several investigators have used C J , ~  successfully in SEA 

applications [60,66,67]. 
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Since this SEA model is very similar to the one developed for example case 111, 

solutions given by equations (5.19) and (5.20) are still valid here provided the existence 

of multiple paths, as opposed to only one path in example case III, is recognized. The 
mean-square velocity levels of the shafts-bearings system <VS> and casing-mount 

system cVc> are 

2 

2 

Power injected into the system is developed by examining the internal static transmission 

error excitation e(t)=eh(w)eiwt. For the spur gear pair, the gear mesh frequency 

o(rad/sec)=NgQ,Mx/30 where Ng is the number of gear teeth and R,M(rpm) is the 

driven shaft speed. By definition, the input power by the gear mesh elastic force 

Fh(t)=khe(t)=eh(CiI)eiwt is given by n,(o)=1/2 (kheh)* Re { ( l/&(a))*}. At a very high 

frequency, it is reasonable to assume that the boundaries of the shafts do not affect the 

gear mesh source regime. Hence the infinite shaft assumption should hold. 

Accordingly, 2, can be obtained analytically using the driving point shaft impedance 

given in Reference [77]; however, the gear mass mg must be included. 

Z,(o) = 2p,Asc , (1 + i) + iom (5.25) 

. Sound power W radiated from the casing is computed using the following equation 

where A, is the total casing surface area 
U 
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W(O) = z,A,< V",o) > oc(o) (5.26) 

Assuming a source directivity Q(o) associated with geared system mounting condition, 

the sound pressure level Lp (dB re 20pPa) in the far field at distance r from the casing is . 

(5:27) 

where R(a)=&S/(l-G) is the room constant, &(o) is the average absorption 

coefficient, S is the room surface area and LW (dB re l.OpW) is the sound power level. 

5 .7 .4  Experimental Validation and Parametric Studies 

The SEA formulation for this example case is verified by comparing results with 

vibroacoustic responses measured on the NASA gearbox [SS]. A detail description of 

the experimental setup and its system parameters have been given in Chapter IV. 

Additionally unweighted $ at r I= 0.38 my directly above the surface of the top cover 

casing plate as shown in Figure 5.2, has been measured with a B&K type 2230 sound 

level meter. Predicted and measured Lp are compared in Figure 5.17a for ~ 1 0 ,  

oC=o,2 and bearing reload 6,,=0.04mm. The second term in equation (5.27) is 

dominated by Q/(4x?) since 4/R cc Q/(4x?) in this case due to 6 = 1.0 and room 

surface area S being very large. Predictions are found to be within +10dB of the 

measured values for typical structural dissipation loss factor 0.0041qc~.04. Figure 

5.17b shows the comparison of spatially averaged mean-square casing acceleration level 
(02<V:>) between theory and experiment. Experimental curve represents the averaged 

value of the measurements made at 3 casing plate locations (top plate, side plate with 
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Figure 5.17 Comparison between theory and NASA experiment [55] for example case 
IV ( ~ 1 0 ,  Q=2, 0,=~~,~,6,,=0.04mm). (a) Sound pressure level L,. 
(b) Spatially averaged casing acceleration. 
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bearings and side plate without bearings). Again, predicted acceleration spectra, which 

are similar to that found for the sound level, are found to be in reasonable agreement 

with the measured spectrum given the appropriate values of qc and y. In general, we 

observe that the response level decreases with increasing qc. Also, comparisons 

suggest that qc in this system may be frequency dependent. 

Next we vary y but keep qc=0.02 constant in Figure 5.18. Comparison between 

theory and measurements also indicates that p 1 0  is the best fit for the experimental data 

especially at the higher frequencies. Here, radiation efficiency ocl and bearing axial 

preload 6,=0.04mm have been specified. 

Now we investigate the effects of casing plate radiation efficiency oc and bearing 

preload or mean axial displacement 6,, on $. Figure 5.19 compares ocl and oc2. 

Based on the comparison with experiment it seems that the radiation efficiency of the 

NASA gearbox is better modeled with ocl although the measured $ curve is mostly 

between o,1 and 0,. curves. Differences between ocl and oc2 are significant at lower 

frequencies, but the variation never exceeds lOdB over the entire frequency range of 

interest. It may be noted that since the acoustic energy radiated W(o) is significantly 

smaller than the energy dissipated by the system, virtually no change is found in the 

predicted casing acceleration spectra by varying oc. The effect of bearing preload on 5 
is shown in Figures 5.20a and 5.20b for oc2 and ocl respectively. Figure 5.20 

indicates that $ is lower when the bearing preload is increased. A similar effect is seen 

for the casing acceleration level which is consistent with the deterministic model 

prediction of Chapter IY. 

I 

1 
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I 
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Figure 5.18 Effect of mJqC on predicted Lp for example case IV (qc=0.02, Q=2, 
oC=o,1, 6,,=0.04mm). 
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5 . 8  CONCLUDING REMARKS 

The vibration transmission through bearing has been analyzed using the SEA 

technique. A new procedure has been developed to compute the coupling loss factor 

which relies on the solution of the boundary value problem at the bearing-casing 

interface. This scheme incorporates the bearing stiffness matrix developed earlier as a 

part of the deterministics vibration models in Chapters 11-IV. Experimental validations 

verify the proposed theory even though a very simple model for the geared rotor system 

has been presented. A more detailed SEA model including energy sharing between 

subsystems is required to analyze this system. This is left for future research. 
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

5 . 1  SUMMARY 

A new precision rolling element bearing model is proposed for the analyses of the 

vibration transmission through bearings and overall system dynamics in rotating 

mechanical equipment including geared rotor systems. Current bearing models, based 

on either ideal boundary conditions or purely translational stiffness element description, 

can not explain how the vibratory motion may be transmitted from the rotating shaft to 

the casing and other connecting structures in rotating mechanical equipment. For 

example, a vibration model of a rotating system based upon the existing bearing models 

can only predict purely in-plane type motion on the flexible casing plate given only the 

bending motion on the shaft. However, experimental results have shown that the casing 

plate motion is primarily flexural or out-of-plane type. Chapter II clarifies this issue 

qualitatively and quantitatively by developing a new mathematical model for the 

precision rolling element bearings from basic principles. A comprehensive bearing 

stiffness matrix [K]bm of dimension 6 is proposed which clearly demonstrates a 

coupling between the shaft bending motion and the flexural motion on the casing plate. 

A numerical scheme which involves a solution to nonlinear algebraic equations is 

proposed for the estimation of the stiffness coefficients given the mean bearing load 

vector. And, a second method which requires the direct evaluation of these stiffness 

201 
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coefficients given the mean bearing displacement vector is also discussed. Some of the 

translational stiffness coefficients of the proposed bearing matrix have been verified 

using available analytical and experimental data. Further validation of [K]bm is not 

possible as coupling coefficients are never measured. Also, parametric studies on the 

effect of unloaded contact angle, preload, or bearing type are included. These results 

lead to a complete characterization of the bearing stiffness matrix. 

Chapter 111 extends the proposed bearing stiffness formulation and demonstrates 

its superiority over existing models in vibration transmission analyses for a generic 

single shaft-bearing-plate-mount system. The bearing stiffness matrix [K]bm is 

incorporated in discrete system models using lumped parameter and finite element 

modeling techniques. Shaft, plate and mount flexibilities are also included in such 

models. The stability issue associated with the proposed bearing model is addressed 

analytically using Liapunov's stability method and the system is found to be dynamically 

stable provided the preloads are sufficiently high. Eigensolution and forced harmonic 

response to the following rolling element bearing system example cases are obtained 

using our formulation and results are compared with the predictions yielded by the 

current vibration models: I. rigid shaft and plate system freely suspended, II. rigid shaft 

and plate supported on flexible mounts, and III. an experimental setup consisting of a 

flexible shaft, two ball bearings, a rectangular plate and the supporting structure. 

Analytical results indicate that our proposed model is indeed capable of predicting plate 

rigid body angular motion or plate flexural motion as excited by shaft motion. Such 

predictions are not observed in simple vibration models. Also, lower degrees of 

freedom models, developed by several previous investigators tend to underestimate the 

resonant frequencies and force or moment transmissibilities as compared with our multi- 
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degree of freedom models. Comparisons between our model and the available 

experiments have been found to be reasonably good. 

The overall dynamics of a geared rotor system which includes a spur gear pair, 

shafts, rolling element bearings, prime mover and load (attached to the geared rotor 

system through flexible torsional couplings), rigid or flexible casing, and compliant or 

massive mounts is studied in Chapter IV. Linear time-invariant, discrete dynamic 

models of a generic geared rotor system with proportional viscous damping are 

.developed using lumped parameter and dynamic finite element techniques which are then 

used to predict the vibration transmissibility through bearings and mounts, casing 

vibration motion, and dynamic response of the internal rotating system. The proposed 

bearing formulation is also included. Each rotating shaft is modeled as an Euler beam in 

the lumped parameter model and as a Timoshenko beam in the dynamic finite element 

model, but the gyroscopic moment is not included. Eigensolution and forced harmonic 

response studies due to rotating mass unbalance or kinematic transmission error 

excitation for the following example cases are obtained using our formulation and 

compared with simple models currently available in the literature and/or experiment: I. a 

single-stage rotor system with flexibly mounted rigid casing consisting of two bearings 

as a special case of the geared rotor system, XI. a spur gear pair drive supported by four 

bearings installed in a flexibly mounted rigid casing, and 111. an experimental setup 

consisting of high precision gear and pinion, and four identical rolling element bearings 

contained in a flexible casing mounted rigidly on a massive foundation. In example 

cases I1 and 111 of Chapter IV, the gear mesh stiffness is assumed to be linear and time- 

invariant. Analytical predictions show that our theory is indeed capable of predicting 

bearing and mount moment transmissibilities in addition to the force transmissibilities. 
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Also, flexural vibrations of the casing plate are predicted well as our theory is in good 

agreement with measurements made on case III of Chapter IV; such predictions are not 

seen in simple models due to inadequate bearing formulation. 

In Chapters 11-IV, the deterministic vibration models of geared rotor system with 

proposed bearing stiffness matrix incorporated have been shown to be reliable up to 

moderately high frequencies. But these models are inadequate at very high frequencies 

when the modal density is high. Classical vibration models usually do not predict 

modes accurately in this frequency regime, require large computational effort and 

produce spectra at many spatial points which are difficult to interpret. Accordingly, we 

have used the statistical energy analysis (SEA) method to predict the mean-square 

vibratory response of internal and external subsystems in a geared rotor system. The 

feasibility of applying SEA to this system is also investigated by performing modal 

analysis of a gearbox. Four example cases are analyzed using SEA: I. a plate- 

cantilevered rectangular beam, II. case I with circular shaft-bearing system replacing the 

cantilevered rectangular beam, III. a circular shaft-bearing-plate-mount system, and N a 

simple geared rotor system. In the first two example cases, we have revised and 

extended Lyon and Eichler's plate-cantilevered rectangular beam problem [56,58] to 

improve the coupling loss factor prediction and to formulate the vibratory energy 

transfer problem through rolling element bearings. The third and final example cases 

compute the system response spectra and compare them with measurements. Good 

agreement is found between theory and experiment provided proper values of the 

dissipation loss factors and bearing preloads are used. The NASA gearbox radiation 

efficiency is found to be nearly unity at higher frequencies. 

. 
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5 . 2  CONTRIBUTIONS 

In this dissertation, several contributions related to the bearing and geared rotor 

systems vibration studies are evident: 

.. 
1. A comprehensive bearing stiffness matrix of dimension 6 have been proposed and 

developed for the analyses of vibration transmission through precision rolling 

element bearings and overall geared rotor system dynamics. Analytical expressions 

for the bearing stiffness coefficients have been given for several types of ball and 

roller bearings. Also, two methods have been proposed for the estimation of the 

bearing stiffness coefficients which involves solution to nonlinear algebraic 

equations and direct evaluation of these coefficients, respectively. Using 

Liapunov's stability method, the proposed bearing system models have been shown 

to be stable provided preloads are sufficiently high. 

2. The proposed bearing model clearly demonstrates a coupling between the shaft 

bending motion and the flexural motion on the casing plate through three example 

cases including comparison with available experiments. Such predictions are not 

observed in existing be&ng vibration models. An overall geared rotor system 

vibration model with the proposed bearing formulation incorporated have been 

developed analytically and verified experimentally. This system includes spur gear 

pair, flexible shafts, flexible or rigid casing, motor, load, and compliant or massive 

mounts. Effects of casing and mounts on the internal geared system vibration and 

on the overall system behavior have been evaluated. Bearing moment transfer 

spectra in addition to force transfer spectra have been computed when the proposed 
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bearing formulation is included in the system models. Simple bearing model can 

only predict bearing force transmissibility spectra in such cases. 

3. Analytical expressions for the coupling loss factor, a statistical energy analysis 

(SEA) parameter, of a shaft-compliant bearing-plate problem have been developed 

which include the newly formulated bearing stiffness matrix. The coupling loss 

factor formulation for a plate-cantilevered rectangular beam problem developed 

earlier earlier by Lyon and Eichler [56,58] has been revised. The proposed 

prediction agrees better with the experimental prediction given by Lyon and Eichler 

[SS] than the previous approximate formulation. The mean-square vibroacoustic 

response of a geared rotor system predicted using SEA at high frequencies has been 

validated by comparison with experiment. 

- 

5 . 2  FUTURE RESEARCH 

Several areas of potential research problems based on the present study of the 

vibration transmission through bearings, are identified as follows: 

1. Analyze vibration transmission through hydrodynamic bearings, using the 

proposed work on rolling element bearings. Develop an experimental methodology 

to estimate the bearing stiffness matrix and transfer properties. Also, develop 

bearing diagnostic techniques using vibration transmission theory proposed in this 

dissertation. 
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2. Extend the proposed overall geared rotor system vibration model with spur gears to 

helical, bevel and worm gear drives. Develop vibration models using the proposed 

bearing model to analyze multiple transmission paths. Improve gear diagnostic 

procedures using analytical bearing transfer properties. 

3. Refine the current statistical energy analysis formulation of a generic geared rotor 

system to investigate the vibratory energy transfer among smaller subsystems and 

to include the effects of rotating shaft torsional modes. Generate analytical and 

experimental schemes to predict coupling loss factors for typical shaft-bearing-plate 

system. Finally, establish gearbox design methodology for reduced airborne and 

structure-borne noise. 



LIST OF REFERENCES 

1. R.H. BADGLEY and R.M. HARTMAN 1974 Journal of Engineering for Industry, 
Transaction of the American Society of Mechanical- Engineers 96(2), 567-577. 
Gearbox noise reduction: prediction and measurement of mesh-frequency vibrations 
within an operating helicopter rotor-drive gearbox. 

2. R.H. BADGLEY and I. LASKIN 1970 USAAVLABS Technical Report 70-12. 
Program for helicopter gearbox noise prediction and reduction. 

3. R.H. BADGLEY and T. CHIANG 1972 USAAMRDL Technical Report 72-6. 
Investigation of gearbox design modifications for reducing helicopter gearbox 
noise. 

4. M.A. BOWES and A. BERMAN 1977 Institute of Environmental Sciences, 334- 
338. Prediction of vibration and noise of a transmission using a dynamic model 
partially derived from test data. 

5. D. R. HOUSER 1989 Gear Noise Short Course Notes, The Ohio State University. 

6 .  T.C. LIM and R. SINGH 1989 NASA Contractor Report 185148 or AVSCOM 
Technical Memorandum 89-C-009. A review of gear housing dynamics and 
acoustics literature. 

7. R.J. DRAG0 1980 Machine Design 52(27), 114-115. New approach for 
analyzing transmission noise. 

8. L. BATTEZZATO and S. TLJRRA 1984 AGARD Conference, Lisbon. Possible 
technological answers to new design requirements for power transmission systems. 

1 
1 
I 
I 
1 
I 
I 
1 
1 
1 
1 
I 
1 
I 
I 
1 
1 
I 
1 

208 



9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

209 

K. ISHIDA, T. MATSUDA and M. FUKUI 1981 Proceedings of the International 
Symposium on Gearing and Power Transmissions, Tokyo, 13-18. Effect of gear 
box on noise reduction of geared device. 

H. N. OZGUVEN 1984 Journal of Vibration, Acoustics, Stress, and Reliability in 
Design, Transaction of the American Society of Mechanical Engineers 106,59-61. 
On the critical speed of continuous shaft-disk systems. 

A. D. DIMAROGONAS and S. A. PAIPETIS 1983 Analytical Methods in Rotor 
Dynamics. London: Applied Science. 

J. S. RAO 1983 Rotor Dynamics. New York: John Wiley. 

E. S. ZoRZI and H. D. NELSON 1977 Journal of Engineering for Power, 
Transaction of the American Society of Mechanical Engineers 99( 1),7 1-77. Finite 
element simulation of rotor-bearing systems with internal damping. 

E. P. GARGIULO 1980 Machine Design 52, 107-110. A simple way to estimate 
bearing stiffness. 

A. KAHRAMAN, H. N. OZGUVEN, D. R. HOUSER and J. J. ZAKRAJSEK 1989 
Proceedings of the International Power Transmission and Gearing Conference, 
Chicago, 375-382. Dynamic analysis of geared rotors by finite elements. 

A. M. MITCHELL, F. B. OSWALD and H. H. COE 1986 NASA TechnicaZ Report 
2626. Testing of UH-60A Helicopter Transmission in NASA Lewis 
2240kW (3000-hp) Facility. 

J. S. LIN 1989 M. S. Thesis, The Ohio State University. Experimental analysis 
of dynamic force transmissibility through bearings. 

T. A. HARRIS 1966 Rolling Bearing Analysis. New York: John Wiley. 

A. PALMGREN 1959 Ball and Roller,Bearing Engineering. Philadelphia: S .  H .  
Burbank. 



210 

20. M.F. WHITE 1979 Journal of Applied Mechanics 46,677-684. Rolling element 
bearing vibration transfer characteristics: effect of stiffness. 

21. M. D. RAJAB 1982 PhB. Dissertation, The Ohio State University. Modeling of 
the transmissibility through rolling element bearing under radial and moment loads. 

22. D. R. HOUSER, G. L. KINZEL, W. B. YOUNG and M. D. RAJAB 1989 
Proceedings of the Seventh International Modal Analysis Conference, Lar Vegas, 
147- 153. Force transmissibility through rolling contact bearings. 

23. W. B. YOUNG 1988 M.S. Thesis, The Ohio State University. Dynamic modeling 
and experimental measurements of a gear shaft and housing system. 

24. J. KRAUS, J. J. BLECH and S. G. BRAUN 1987 Journal of Vibration, Acoustics, 
Stress, and Reliability in Design, Transaction of the American Society of 
Mechanical Engineers 109, 235-240. In situ determination of rolling bearing 
stiffness and damping by modal analysis. . 

25. S.V. NERIYA and T.S. SANKAR 1984 The Shock and Vibration Bulletin 54(3), 
67-75. Effect of coupled torsional-flexural vibration of a geared shaft system on 
dynamic tooth load. 

26. S.V. NERIYA and T.S. SANKAR 1985 The Shock and Vibration Bulletin 55(3), 
13-25. Coupled torsional-flexural vibration of a geared shaft system using finite 
element method. 

27. H. IDA,  A. TAMURA and H. YAMAMOTO 1986 Bullentin of the Japanese Society 
of Mechanical Engineers 29,1811-1916. Dynamic characteristics of a gear train 
system with softly supported shafts. 

28. N. IwATSUBO, S. ARII and R. KAWAI 1984 Bullentin of the Japanese Society of 
Mechanical Engineers 27,27 1-277. Coupled lateral-torsional vibrations of rotor 
system trained by gears (1. Analysis by transfer matrix method). 

1 
I 
1 
1 
1 
1 
1 
1 
I 
I 
1 
1 
1 
I 
I 
1 
1 
I 
1 



21 1 

I 
1 
I 

1 
I 
I 

29. H.N. OZGUVEN and D.R. HOUSER 1988 Journal of Sound and Vibration 
121(3), 383-411. Mathematical models used in gear dynamics - a review. 

30. T. L. H. WALFORD and B. J. STONE 1980 Journal of Mechanical Engineering 
Science 22(4), 175-181. The measurement of the radial stiffness of rolling 
element bearings under oscillation conditions. - 

31. P. ESCHMANN, L. HASBARGEN and K. WEIGAND 1985 Ball and Roller 
Bearings. New York John Wiley. 

32. B. J. HAMROCK and W. J. ANDERSON 1983 NASA Reference Publication 1105. 
Rolling-element bearings. 

33. P. K. GUPTA 1984 Advanced Dynamics of Rolling Elements. Berlin: Spnnger- 
Verlag. 

34. A. B. JONES 1946 New Departure Engineering Data, General Motors. Analysis 
of stresses and deflections. 

35. R. R. DAVIS 1988 Proceedings of the Second International Symposium on 
Transport Phenomena, Dynamics and Design of Rotating Machinery, Honolulu, 
241-254. Incorporating general race and housing flexibility and deadband in rolling 
element bearing analysis. 

36. W. H. PRESS, B. P. FLANNERY, S. A. TEUKOLSKY and W. T. VETTERLING 
1986 Numerical Recipes. Cambridge: Cambridge University Press. 

37. J. ORTEGA and W. RHEINBOLDT 1970 Iterative Solution of Nonlinear Equations 
in Several Variables. New York: Academic Press. 

38. STRUCTURAL DYNAMICS RESEARCH CORPORATION 1986 SYSTAN User's 
Guide. Milford, Ohio: Structural Dynamics Research Corporation. 

39. G. J. DESALVO AND J. A. SWANSON 1983 ANSYS User's Manual. Houston, 
Pennsylvania: Swanson Analysis System. 



212 

40. W. T. THOMPSON 1981 Theory of Vibration with Applications. New Jersey: 
Prentice-Hall. 

41. W. D. PILKEY and P. Y. CHANG 1978 Modern Formulas for Statics and 
Dynamics. New York McGraw Hill. 

42. L. MEIROVITCH 1980 Computational Methods in Structural Dynamics. Alphen 
aan den Rijn: Sijthoff & Noordhoff. 

43. S. RMOSHENKO, D. H. YOUNG and W. WEAVER, Jr. 1974 Vibration Problems 
in Engineering. New York John Wiley. 

44. D. J. INMAN 1989 Vibration with Control, Measurement, and Stability. New 
Jersey: Prentice Halt 

45. L. MEIROVITCH 1970 Methods of Analytical Dynamics. New York: McGraw 
Hill. 

46. A. KA” 1989 PhD Dissertation Research, The Ohio State University. 

47. M.S. TAVAKOLI and D.R. HOUSER 1985 Journal of Mechanisms, 
Transmissions, and Automation in Design, Transaction of the American Society of 
Mechanical Engineers 108, 86-95. Optimum profile modifications for 

minimization of static transmission errors of spur gears. 

48. 0. MAHRENHOLTZ 1984 Dynamics of Rotors (Stability and System 
Identification). New York Springer-Verlag. 

49. J.W. SMITH 1988 Vibrations of Structures (Applications in Civil Engineering 
Design). London: Chapman and Hall. 

50. T.C. LIM, R. SINGH and J.J. ZAKRAJSEK 1989 Proceedings of the Seventh 
International Modal Analysis Conference, L a  Vegas, 1072- 1078. Modal analysis 
of gear housing and mounts. 

1 
1 
I 
I 
I 
I 
I 
1 
1 
1 
I 
I 
1 
I 
I 
1 
1 
1 
1 



51. 

52. 

53. 

54. 

55.  

' 56. 

57. 

58. 

59. 

213 

J.W. LUND and 2. WANG 1986 Journal of Vibration, Acoustics, Stress, and 
Reliability in Design, Transaction of the American Society of Mechanical Engineers 
108,177-1 8 1. Application of the Riccati method to rotor dynamic analysis of long 
shafts on a flexible foundation. 

J.M. VANCE, B.T. MURPHY and H.A. TRIPP 1987 Journal of Vibration, 
Acoustics, Stress, and Reliability in Design, Transaction of the American Society of 
Mechanical Engineers 109, 8-14. Critical speeds of turbomachinery: computer 
predictions vs. experimental measurements - Part II: effect of tilt-pad bearings and 
foundation dynamics. 

L.L. EARLES, A.B. PALAZZOLO, C.K. LEE and C.H. GERHOLD 1988 Journal of 
Vibration, Acoustics, Stress, and Reliability in Design, Transaction of the American 
Society of Mechanical Engineers 110,300-306. Hybrid finite element - boundary 
element simulation of rotating machinery supported on flexible foundation and soil. 

A. BERMAN 1984 AGARD Conference Proceedings, Lisbon. Transmission of 
gear noise to aircraft interiors prediction methods. 

J.J. ZAKRAJSEK and F.B. OSWALD 1989 Communication on the NASA Lewis 
Research Center spur gear test facility. 

R.H. LYON 1975 Statistical Energy Analysis of Dynamical Systems. Cambridge: 
The MIT Press. 

J. WOODHOUSE 1981 Applied Acoustics 14, 455-469. An introduction to 
statistical energy analysis of structural vibration. 

R.H. LYON and E. EICHLER 1964 Journal of the Acoustical Society of America 
36(7), 1344-1354. Random vibration of connected structures. 

R.H. LYON and T.D. SCHARTON 1965 Journal of the Acoustical Society of 
America 38(2), 253-261. Vibrational-energy transmission in a three-element 
structure. 



214 

60. M.J. CROCKER and A.J. PRICE 1969 Journal of Sound and Vibration 9(3), 469- 
486. Sound transmission using statistical energy analysis. 

61. E.H. DOWELL and Y. KUBOTA 1985 Journal of Applied Mechanics 52, 949- 
957. Asymptotic modal analysis and statistical energy analysis of dynamical 
sys terns. 

62. Y. KUBOTA and E.H. DOWELL 1986 Journal of Sound and Vibration 106(2), 
203-216. Experimental investigation of asymptotic modal analysis for a rectangular 
plate. 

63. Y. KUBOTA, H.D. DIoNNE and E.H. DOWELL 1988 Journal of Vibration, 
Acoustics, Stress, and Reliability in Design 110, 371-376. Asymptotic modal 
analysis and statistical energy analysis of an acoustic cavity. 

64. E. SKUDRZYK 1980 Journal of the Acoustical Society of America 67(4), 1105- 
1135. The mean-value method of predicting the dynamic response of complex 
vibrators. 

65. V.R. MILLER 1980 M.S. Thesis, The Ohio State University. Prediction of 
interior noise by statistical energy analysis (SEA) method. 

66. B.L. CLARKSON and K.T. BROWN 1985 Journal of Vibration, Acoustics, Stress, 
and Reliability in Design 107,357-360. Acoustic radiation damping. 

67. J.C. SUN, H.B. SUN, L.C. CHOW and E.J. RICHARDS 1986 Journal of Sound 
and Vibration 104(2), 243-257. Predictions of total loss factors of structures, Part 
II: Loss factors of sand-fdled structure. 

68. G.J. STIMPSON, J.C. SUN and E.J. RICHARDS 1986 Journal of Sourid and 
Vibration 107( l),  107-120. Predicting sound power radiation from built-up 
structures using statistical energy analysis. 

69. A.J. KEANE and W.G. PRICE 1987 Journal of Sound and Vibration 117(2), 
363-386. Statistical energy analysis of strongly coupled systems. 

1 
I 
I 
I 
1 
I 
1 
1 
1 
1 
1 
I 
1 
1 
I 
II 
1 
I 
1 



215 

70. J. WOODHOUSE 1981 Journal of the Acoustical Society of America 69(6), 1695- 
1709. An approach to the theoretical background of statistical energy analysis 
applied to structural vibration. 

7 1. P.W. SMITH, Jr. 1979 Journal of the Acoustical Society of America 65(3), 695- 
698. Statistical models of coupled dynamical systems and the transition from weak 
to strong coupling. 

72. G E N ~ .  INC. 1988 GenRad System Operating Manual. 

73. STRUCTURAL DYNAMICS RESEARCH CORPORATION 1985 User Manual for 
Modal Analysis. 

74. G.P. MATHUR, J.E. MANNING and A.C. AUBERT 1988 NOISE-CON 88, 
Purdue University, West Lafayette. Bell 222 helicopter cabin noise: analytical 
modeling and flight test validation. 

75. J.L. GUYADER, C. BOISSON and C. LESUEUR 1982 Journal of Sound and 
Vibration 81(1), 81-92. Energy transmission in finite coupled plates, Part I: 
Theory. 

76. W.L. GHERING and D. RAJ 1987 Proceedings of the Winter Annual Meeting of 
the American Society of Mechanical Engineers, Boston, 8 1-90. Comparison of 
statistical energy analysis predictions with experimental results for cylinder-plate- 
beam structures. 

77. L. CREMER, M. HECKL and E.E. UNGAR 1973 Structure-Borne Sound. Berlin: 
Springer-Verlag. 

78. R. SWGH 1989 Personal communication, based on the Ohio State University Gear 
Noise Short.Courses. 

79. G. MAIDANIK 1962 Journal of the Acoustical Society of America 34(6), 809- 
826. Response of ribbed panels to reverberant acoustic fields. 


